Yuting Yang, Yuhong Zou, Xi Chen, Haidong Sun, Xia Hua, Lee Johnston, Xiangfang Zeng, Shiyan Qiao, Changchuan Ye
{"title":"基于代谢途径改造和报告引导突变体选择(RGMS)的大肠杆菌代谢工程,用于生产 5-氨基乙酰丙酸","authors":"Yuting Yang, Yuhong Zou, Xi Chen, Haidong Sun, Xia Hua, Lee Johnston, Xiangfang Zeng, Shiyan Qiao, Changchuan Ye","doi":"10.1186/s13068-024-02530-4","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><p>5-Aminolevulinic acid (ALA) recently received much attention due to its potential application in many fields such as medicine, nutrition and agriculture. Metabolic engineering is an efficient strategy to improve microbial production of 5-ALA.</p><h3>Results</h3><p>In this study, an ALA production strain of <i>Escherichia coli</i> was constructed by rational metabolic engineering and stepwise improvement. A metabolic strategy to produce ALA directly from glucose in this recombinant <i>E. coli</i> via both C4 and C5 pathways was applied herein. The expression of a modified <i>hemA</i><sup><i>RS</i></sup> gene and rational metabolic engineering by gene knockouts significantly improved ALA production from 765.9 to 2056.1 mg/L. Next, we tried to improve ALA production by RGMS-directed evolution of <i>eamA</i> gene. After RGMS, the ALA yield of strain A2-ASK reached 2471.3 mg/L in flask. Then, we aimed to improve the oxidation resistance of cells by overexpressing <i>sodB</i> and <i>katE</i> genes and ALA yield reached 2703.8 mg/L. A final attempt is to replace original promoter of <i>hemB</i> gene in genome with a weaker one to decrease its expression. After 24 h cultivation, a high ALA yield of 19.02 g/L was achieved by 108-ASK in a 5 L fermenter.</p><h3>Conclusions</h3><p>These results suggested that an industrially competitive strain can be efficiently developed by metabolic engineering based on combined rational modification and optimization of gene expression.</p></div>","PeriodicalId":494,"journal":{"name":"Biotechnology for Biofuels","volume":"17 1","pages":""},"PeriodicalIF":6.1000,"publicationDate":"2024-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://biotechnologyforbiofuels.biomedcentral.com/counter/pdf/10.1186/s13068-024-02530-4","citationCount":"0","resultStr":"{\"title\":\"Metabolic engineering of Escherichia coli for the production of 5-aminolevulinic acid based on combined metabolic pathway modification and reporter-guided mutant selection (RGMS)\",\"authors\":\"Yuting Yang, Yuhong Zou, Xi Chen, Haidong Sun, Xia Hua, Lee Johnston, Xiangfang Zeng, Shiyan Qiao, Changchuan Ye\",\"doi\":\"10.1186/s13068-024-02530-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Background</h3><p>5-Aminolevulinic acid (ALA) recently received much attention due to its potential application in many fields such as medicine, nutrition and agriculture. Metabolic engineering is an efficient strategy to improve microbial production of 5-ALA.</p><h3>Results</h3><p>In this study, an ALA production strain of <i>Escherichia coli</i> was constructed by rational metabolic engineering and stepwise improvement. A metabolic strategy to produce ALA directly from glucose in this recombinant <i>E. coli</i> via both C4 and C5 pathways was applied herein. The expression of a modified <i>hemA</i><sup><i>RS</i></sup> gene and rational metabolic engineering by gene knockouts significantly improved ALA production from 765.9 to 2056.1 mg/L. Next, we tried to improve ALA production by RGMS-directed evolution of <i>eamA</i> gene. After RGMS, the ALA yield of strain A2-ASK reached 2471.3 mg/L in flask. Then, we aimed to improve the oxidation resistance of cells by overexpressing <i>sodB</i> and <i>katE</i> genes and ALA yield reached 2703.8 mg/L. A final attempt is to replace original promoter of <i>hemB</i> gene in genome with a weaker one to decrease its expression. After 24 h cultivation, a high ALA yield of 19.02 g/L was achieved by 108-ASK in a 5 L fermenter.</p><h3>Conclusions</h3><p>These results suggested that an industrially competitive strain can be efficiently developed by metabolic engineering based on combined rational modification and optimization of gene expression.</p></div>\",\"PeriodicalId\":494,\"journal\":{\"name\":\"Biotechnology for Biofuels\",\"volume\":\"17 1\",\"pages\":\"\"},\"PeriodicalIF\":6.1000,\"publicationDate\":\"2024-06-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://biotechnologyforbiofuels.biomedcentral.com/counter/pdf/10.1186/s13068-024-02530-4\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biotechnology for Biofuels\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1186/s13068-024-02530-4\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biotechnology for Biofuels","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1186/s13068-024-02530-4","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
摘要
背景5-氨基乙酰丙酸(ALA)因其在医药、营养和农业等诸多领域的潜在应用而受到广泛关注。结果 本研究通过合理的代谢工程和逐步改良,构建了一株大肠杆菌 ALA 生产菌株。本研究采用了一种代谢策略,在重组大肠杆菌中通过 C4 和 C5 途径直接从葡萄糖生产 ALA。通过表达修饰的 hemARS 基因和基因敲除的合理代谢工程,ALA 的产量从 765.9 mg/L 显著提高到 2056.1 mg/L。接下来,我们尝试通过 RGMS 引导 eamA 基因进化来提高 ALA 产量。RGMS 后,菌株 A2-ASK 在烧瓶中的 ALA 产量达到 2471.3 mg/L。然后,我们通过过表达 sodB 和 katE 基因来提高细胞的抗氧化性,ALA 产量达到 2703.8 mg/L。最后的尝试是用较弱的启动子替换基因组中 hemB 基因的原始启动子,以降低其表达量。在 5 L 发酵罐中培养 24 h 后,108-ASK 的 ALA 产量高达 19.02 g/L。
Metabolic engineering of Escherichia coli for the production of 5-aminolevulinic acid based on combined metabolic pathway modification and reporter-guided mutant selection (RGMS)
Background
5-Aminolevulinic acid (ALA) recently received much attention due to its potential application in many fields such as medicine, nutrition and agriculture. Metabolic engineering is an efficient strategy to improve microbial production of 5-ALA.
Results
In this study, an ALA production strain of Escherichia coli was constructed by rational metabolic engineering and stepwise improvement. A metabolic strategy to produce ALA directly from glucose in this recombinant E. coli via both C4 and C5 pathways was applied herein. The expression of a modified hemARS gene and rational metabolic engineering by gene knockouts significantly improved ALA production from 765.9 to 2056.1 mg/L. Next, we tried to improve ALA production by RGMS-directed evolution of eamA gene. After RGMS, the ALA yield of strain A2-ASK reached 2471.3 mg/L in flask. Then, we aimed to improve the oxidation resistance of cells by overexpressing sodB and katE genes and ALA yield reached 2703.8 mg/L. A final attempt is to replace original promoter of hemB gene in genome with a weaker one to decrease its expression. After 24 h cultivation, a high ALA yield of 19.02 g/L was achieved by 108-ASK in a 5 L fermenter.
Conclusions
These results suggested that an industrially competitive strain can be efficiently developed by metabolic engineering based on combined rational modification and optimization of gene expression.
期刊介绍:
Biotechnology for Biofuels is an open access peer-reviewed journal featuring high-quality studies describing technological and operational advances in the production of biofuels, chemicals and other bioproducts. The journal emphasizes understanding and advancing the application of biotechnology and synergistic operations to improve plants and biological conversion systems for the biological production of these products from biomass, intermediates derived from biomass, or CO2, as well as upstream or downstream operations that are integral to biological conversion of biomass.
Biotechnology for Biofuels focuses on the following areas:
• Development of terrestrial plant feedstocks
• Development of algal feedstocks
• Biomass pretreatment, fractionation and extraction for biological conversion
• Enzyme engineering, production and analysis
• Bacterial genetics, physiology and metabolic engineering
• Fungal/yeast genetics, physiology and metabolic engineering
• Fermentation, biocatalytic conversion and reaction dynamics
• Biological production of chemicals and bioproducts from biomass
• Anaerobic digestion, biohydrogen and bioelectricity
• Bioprocess integration, techno-economic analysis, modelling and policy
• Life cycle assessment and environmental impact analysis