Luiz Henrique dos Santos, F. D. Kiss, A. C. Ferraz and R. Miotto*,
{"title":"Ag@Au和Au@Ag核壳纳米颗粒:生长过程及与小分子相互作用的启示","authors":"Luiz Henrique dos Santos, F. D. Kiss, A. C. Ferraz and R. Miotto*, ","doi":"10.1021/acs.jpcc.4c03044","DOIUrl":null,"url":null,"abstract":"<p >In this investigation, we employed simulations and computational methodologies to examine pure silver and gold nanoparticles (NPs), alongside their core–shell configurations. Our research delved into, assessing the effects and adsorption tendencies of methanethiol molecules on diverse sites within these NPs. In our calculations, the effects of the inclusion of dispersion forces are analyzed. Structural analysis unveiled contractions in larger NPs and notable variations in adsorption energies across silver and gold surfaces. Furthermore, our study scrutinized not only the growth process but also the adsorption behavior of a model molecule within core–shell structures. We found that the arrangement of metal layers within these structures significantly impacted the adsorption energies of methanethiol, closely resembling the behavior observed in the smaller pure gold NPs. Notably, even a single shell layer led to discernible changes in the electronic structure. Overall, our investigation underscored the profound influence of the NP size, composition, and arrangement on adsorption energies. Interestingly, introducing methanethiol molecules to larger-scale NPs exhibited minimal impact on the electronic structure despite the evident changes in adsorption behaviors.</p>","PeriodicalId":61,"journal":{"name":"The Journal of Physical Chemistry C","volume":"128 25","pages":"10751–10760"},"PeriodicalIF":3.2000,"publicationDate":"2024-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acs.jpcc.4c03044","citationCount":"0","resultStr":"{\"title\":\"Ag@Au and Au@Ag Core–Shell Nanoparticles: Insights on the Growth Process and Interactions with Small Molecules\",\"authors\":\"Luiz Henrique dos Santos, F. D. Kiss, A. C. Ferraz and R. Miotto*, \",\"doi\":\"10.1021/acs.jpcc.4c03044\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >In this investigation, we employed simulations and computational methodologies to examine pure silver and gold nanoparticles (NPs), alongside their core–shell configurations. Our research delved into, assessing the effects and adsorption tendencies of methanethiol molecules on diverse sites within these NPs. In our calculations, the effects of the inclusion of dispersion forces are analyzed. Structural analysis unveiled contractions in larger NPs and notable variations in adsorption energies across silver and gold surfaces. Furthermore, our study scrutinized not only the growth process but also the adsorption behavior of a model molecule within core–shell structures. We found that the arrangement of metal layers within these structures significantly impacted the adsorption energies of methanethiol, closely resembling the behavior observed in the smaller pure gold NPs. Notably, even a single shell layer led to discernible changes in the electronic structure. Overall, our investigation underscored the profound influence of the NP size, composition, and arrangement on adsorption energies. Interestingly, introducing methanethiol molecules to larger-scale NPs exhibited minimal impact on the electronic structure despite the evident changes in adsorption behaviors.</p>\",\"PeriodicalId\":61,\"journal\":{\"name\":\"The Journal of Physical Chemistry C\",\"volume\":\"128 25\",\"pages\":\"10751–10760\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2024-06-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.acs.org/doi/epdf/10.1021/acs.jpcc.4c03044\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Journal of Physical Chemistry C\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acs.jpcc.4c03044\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Physical Chemistry C","FirstCategoryId":"1","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.jpcc.4c03044","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Ag@Au and Au@Ag Core–Shell Nanoparticles: Insights on the Growth Process and Interactions with Small Molecules
In this investigation, we employed simulations and computational methodologies to examine pure silver and gold nanoparticles (NPs), alongside their core–shell configurations. Our research delved into, assessing the effects and adsorption tendencies of methanethiol molecules on diverse sites within these NPs. In our calculations, the effects of the inclusion of dispersion forces are analyzed. Structural analysis unveiled contractions in larger NPs and notable variations in adsorption energies across silver and gold surfaces. Furthermore, our study scrutinized not only the growth process but also the adsorption behavior of a model molecule within core–shell structures. We found that the arrangement of metal layers within these structures significantly impacted the adsorption energies of methanethiol, closely resembling the behavior observed in the smaller pure gold NPs. Notably, even a single shell layer led to discernible changes in the electronic structure. Overall, our investigation underscored the profound influence of the NP size, composition, and arrangement on adsorption energies. Interestingly, introducing methanethiol molecules to larger-scale NPs exhibited minimal impact on the electronic structure despite the evident changes in adsorption behaviors.
期刊介绍:
The Journal of Physical Chemistry A/B/C is devoted to reporting new and original experimental and theoretical basic research of interest to physical chemists, biophysical chemists, and chemical physicists.