Vis-SPLIT:用于 mRNA 表达分类的交互式分层建模。

Braden Roper, James C Mathews, Saad Nadeem, Ji Hwan Park
{"title":"Vis-SPLIT:用于 mRNA 表达分类的交互式分层建模。","authors":"Braden Roper, James C Mathews, Saad Nadeem, Ji Hwan Park","doi":"10.1109/vis54172.2023.00030","DOIUrl":null,"url":null,"abstract":"<p><p>We propose an interactive visual analytics tool, Vis-SPLIT, for partitioning a population of individuals into groups with similar gene signatures. Vis-SPLIT allows users to interactively explore a dataset and exploit visual separations to build a classification model for specific cancers. The visualization components reveal gene expression and correlation to assist specific partitioning decisions, while also providing overviews for the decision model and clustered genetic signatures. We demonstrate the effectiveness of our framework through a case study and evaluate its usability with domain experts. Our results show that Vis-SPLIT can classify patients based on their genetic signatures to effectively gain insights into RNA sequencing data, as compared to an existing classification system.</p>","PeriodicalId":519948,"journal":{"name":"IEEE Visualization Conference : VIS. IEEE Conference on Visualization","volume":"2023 ","pages":"106-110"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11179685/pdf/","citationCount":"0","resultStr":"{\"title\":\"Vis-SPLIT: Interactive Hierarchical Modeling for mRNA Expression Classification.\",\"authors\":\"Braden Roper, James C Mathews, Saad Nadeem, Ji Hwan Park\",\"doi\":\"10.1109/vis54172.2023.00030\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>We propose an interactive visual analytics tool, Vis-SPLIT, for partitioning a population of individuals into groups with similar gene signatures. Vis-SPLIT allows users to interactively explore a dataset and exploit visual separations to build a classification model for specific cancers. The visualization components reveal gene expression and correlation to assist specific partitioning decisions, while also providing overviews for the decision model and clustered genetic signatures. We demonstrate the effectiveness of our framework through a case study and evaluate its usability with domain experts. Our results show that Vis-SPLIT can classify patients based on their genetic signatures to effectively gain insights into RNA sequencing data, as compared to an existing classification system.</p>\",\"PeriodicalId\":519948,\"journal\":{\"name\":\"IEEE Visualization Conference : VIS. IEEE Conference on Visualization\",\"volume\":\"2023 \",\"pages\":\"106-110\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11179685/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Visualization Conference : VIS. IEEE Conference on Visualization\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/vis54172.2023.00030\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/12/20 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Visualization Conference : VIS. IEEE Conference on Visualization","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/vis54172.2023.00030","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/12/20 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们提出了一种交互式可视化分析工具 Vis-SPLIT,用于将个体群体划分为具有相似基因特征的群体。Vis-SPLIT 允许用户交互式地探索数据集,并利用可视化分离建立特定癌症的分类模型。可视化组件揭示了基因表达和相关性,以协助特定的分区决策,同时还提供了决策模型和聚类基因特征的概览。我们通过案例研究证明了我们框架的有效性,并与领域专家一起评估了其可用性。结果表明,与现有的分类系统相比,Vis-SPLIT 可以根据基因特征对患者进行分类,从而有效地深入了解 RNA 测序数据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Vis-SPLIT: Interactive Hierarchical Modeling for mRNA Expression Classification.

We propose an interactive visual analytics tool, Vis-SPLIT, for partitioning a population of individuals into groups with similar gene signatures. Vis-SPLIT allows users to interactively explore a dataset and exploit visual separations to build a classification model for specific cancers. The visualization components reveal gene expression and correlation to assist specific partitioning decisions, while also providing overviews for the decision model and clustered genetic signatures. We demonstrate the effectiveness of our framework through a case study and evaluate its usability with domain experts. Our results show that Vis-SPLIT can classify patients based on their genetic signatures to effectively gain insights into RNA sequencing data, as compared to an existing classification system.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信