{"title":"嗅觉工作记忆能力范式。","authors":"Lixin Jiang, Gengdi Huang, Xin Yu","doi":"10.1002/cpz1.1072","DOIUrl":null,"url":null,"abstract":"<p>Working memory capacity (WMC), a crucial component of working memory (WM), has consistently drawn the attention of researchers. Exploring the underlying neurobiological mechanisms behind it is currently a prominent focus in the field of neuroscience. Previously, we developed a novel behavioral paradigm for rodents called the olfactory working memory capacity (OWMC) paradigm, which serves as an effective tool for quantifying the WMC of rodents. The OWMC task comprises five phases: context adaptation, digging training, rule-learning for nonmatching to a single sample odor (NMSS), rule-learning for nonmatching to multiple sample odors (NMMS), and capacity testing. In the first phase, mice are handled to reduce stress and acclimate to the training cage. The second phase involves training mice to dig in a bowl of unscented sawdust to locate a piece of cheese. In the third phase, mice are trained to locate the cheese pellet in a bowl with a noveal odor. The fourth phase requires mice to distinguish the novel odor among multiple scented bowls to locate the cheese pellet. Finally, in the fifth phase, mice undergo several WMC tests until they achieve a stable level of performance. In this protocol paper, we will provide detailed instructions on how to implement the behavioral paradigm. © 2024 Wiley Periodicals LLC.</p><p><b>Basic Protocol 1</b>: Context adaptation</p><p><b>Basic Protocol 2</b>: Digging training</p><p><b>Basic Protocol 3</b>: Rule-learning for NMSS</p><p><b>Basic Protocol 4</b>: Rule-learning for NMMS</p><p><b>Basic Protocol 5</b>: Capacity testing</p>","PeriodicalId":93970,"journal":{"name":"Current protocols","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Olfactory Working Memory Capacity Paradigm\",\"authors\":\"Lixin Jiang, Gengdi Huang, Xin Yu\",\"doi\":\"10.1002/cpz1.1072\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Working memory capacity (WMC), a crucial component of working memory (WM), has consistently drawn the attention of researchers. Exploring the underlying neurobiological mechanisms behind it is currently a prominent focus in the field of neuroscience. Previously, we developed a novel behavioral paradigm for rodents called the olfactory working memory capacity (OWMC) paradigm, which serves as an effective tool for quantifying the WMC of rodents. The OWMC task comprises five phases: context adaptation, digging training, rule-learning for nonmatching to a single sample odor (NMSS), rule-learning for nonmatching to multiple sample odors (NMMS), and capacity testing. In the first phase, mice are handled to reduce stress and acclimate to the training cage. The second phase involves training mice to dig in a bowl of unscented sawdust to locate a piece of cheese. In the third phase, mice are trained to locate the cheese pellet in a bowl with a noveal odor. The fourth phase requires mice to distinguish the novel odor among multiple scented bowls to locate the cheese pellet. Finally, in the fifth phase, mice undergo several WMC tests until they achieve a stable level of performance. In this protocol paper, we will provide detailed instructions on how to implement the behavioral paradigm. © 2024 Wiley Periodicals LLC.</p><p><b>Basic Protocol 1</b>: Context adaptation</p><p><b>Basic Protocol 2</b>: Digging training</p><p><b>Basic Protocol 3</b>: Rule-learning for NMSS</p><p><b>Basic Protocol 4</b>: Rule-learning for NMMS</p><p><b>Basic Protocol 5</b>: Capacity testing</p>\",\"PeriodicalId\":93970,\"journal\":{\"name\":\"Current protocols\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current protocols\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/cpz1.1072\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current protocols","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cpz1.1072","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
The Olfactory Working Memory Capacity Paradigm
Working memory capacity (WMC), a crucial component of working memory (WM), has consistently drawn the attention of researchers. Exploring the underlying neurobiological mechanisms behind it is currently a prominent focus in the field of neuroscience. Previously, we developed a novel behavioral paradigm for rodents called the olfactory working memory capacity (OWMC) paradigm, which serves as an effective tool for quantifying the WMC of rodents. The OWMC task comprises five phases: context adaptation, digging training, rule-learning for nonmatching to a single sample odor (NMSS), rule-learning for nonmatching to multiple sample odors (NMMS), and capacity testing. In the first phase, mice are handled to reduce stress and acclimate to the training cage. The second phase involves training mice to dig in a bowl of unscented sawdust to locate a piece of cheese. In the third phase, mice are trained to locate the cheese pellet in a bowl with a noveal odor. The fourth phase requires mice to distinguish the novel odor among multiple scented bowls to locate the cheese pellet. Finally, in the fifth phase, mice undergo several WMC tests until they achieve a stable level of performance. In this protocol paper, we will provide detailed instructions on how to implement the behavioral paradigm. © 2024 Wiley Periodicals LLC.
Basic Protocol 1: Context adaptation
Basic Protocol 2: Digging training
Basic Protocol 3: Rule-learning for NMSS
Basic Protocol 4: Rule-learning for NMMS
Basic Protocol 5: Capacity testing