用于异常和百分位估计的脑形态规范建模平台:Brain MoNoCle.

ArXiv Pub Date : 2024-12-05
Bethany Little, Nida Alyas, Alexander Surtees, Gavin P Winston, John S Duncan, David A Cousins, John-Paul Taylor, Peter Taylor, Karoline Leiberg, Yujiang Wang
{"title":"用于异常和百分位估计的脑形态规范建模平台:Brain MoNoCle.","authors":"Bethany Little, Nida Alyas, Alexander Surtees, Gavin P Winston, John S Duncan, David A Cousins, John-Paul Taylor, Peter Taylor, Karoline Leiberg, Yujiang Wang","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Normative models of brain structure estimate the effects of covariates such as age and sex using large samples of healthy controls. These models can then be applied to e.g. smaller clinical cohorts to distinguish disease effects from other covariates. However, these advanced statistical modelling approaches can be difficult to access, and processing large healthy cohorts is computationally demanding. Thus, accessible platforms with pre-trained normative models are needed. We present such a platform for brain morphology analysis as an open-source web application (https://cnnplab.shinyapps.io/BrainMoNoCle/), with six key features: (i) user-friendly web interface, (ii) individual and group outputs, (iii) multi-site analysis, (iv) regional and whole-brain analysis, (v) integration with existing tools, and (vi) featuring multiple morphology metrics. Using a diverse sample of 3,276 healthy controls across 21 sites, we pre-trained normative models on various metrics. We validated the models with a small sample of individuals with bipolar disorder, showing outputs that aligned closely with existing literature only after applying our normative modelling. Using a cohort of people with temporal lobe epilepsy, we showed that individual-level abnormalities were in line with seizure lateralisation. Finally, with the ability to investigate multiple morphology measures in the same framework, we found that biological covariates are better explained in specific morphology measures, and for applications, only some measures are sensitive to the disease process. Our platform offers a comprehensive framework to analyse brain morphology in clinical and research settings. Validations confirm the superiority of normative models and the advantage of investigating a range of brain morphology metrics together.</p>","PeriodicalId":93888,"journal":{"name":"ArXiv","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11177948/pdf/","citationCount":"0","resultStr":"{\"title\":\"Brain Morphology Normative modelling platform for abnormality and Centile estimation: Brain MoNoCle.\",\"authors\":\"Bethany Little, Nida Alyas, Alexander Surtees, Gavin P Winston, John S Duncan, David A Cousins, John-Paul Taylor, Peter Taylor, Karoline Leiberg, Yujiang Wang\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Normative models of brain structure estimate the effects of covariates such as age and sex using large samples of healthy controls. These models can then be applied to e.g. smaller clinical cohorts to distinguish disease effects from other covariates. However, these advanced statistical modelling approaches can be difficult to access, and processing large healthy cohorts is computationally demanding. Thus, accessible platforms with pre-trained normative models are needed. We present such a platform for brain morphology analysis as an open-source web application (https://cnnplab.shinyapps.io/BrainMoNoCle/), with six key features: (i) user-friendly web interface, (ii) individual and group outputs, (iii) multi-site analysis, (iv) regional and whole-brain analysis, (v) integration with existing tools, and (vi) featuring multiple morphology metrics. Using a diverse sample of 3,276 healthy controls across 21 sites, we pre-trained normative models on various metrics. We validated the models with a small sample of individuals with bipolar disorder, showing outputs that aligned closely with existing literature only after applying our normative modelling. Using a cohort of people with temporal lobe epilepsy, we showed that individual-level abnormalities were in line with seizure lateralisation. Finally, with the ability to investigate multiple morphology measures in the same framework, we found that biological covariates are better explained in specific morphology measures, and for applications, only some measures are sensitive to the disease process. Our platform offers a comprehensive framework to analyse brain morphology in clinical and research settings. Validations confirm the superiority of normative models and the advantage of investigating a range of brain morphology metrics together.</p>\",\"PeriodicalId\":93888,\"journal\":{\"name\":\"ArXiv\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-12-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11177948/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ArXiv\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ArXiv","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

大脑结构的规范模型是利用大量健康对照样本来估算年龄和性别等协变量的影响。然后,这些模型可应用于较小的临床队列,以区分疾病效应和其他协变量。然而,这些先进的统计建模方法可能难以使用,而且处理大型健康队列对计算要求很高。因此,我们需要可访问的、带有预训练常模的平台。我们提出的脑形态分析平台是一个开源网络应用程序 https://cnnplab.shinyapps.io/normativemodelshiny/,具有以下六大特点:(i) 用户友好的网络界面,(ii) 个人和群体输出,(iii) 多站点分析,(iv) 区域和全脑分析,(v) 与现有工具集成,以及 (vi) 具有多种形态学指标。我们利用 13 个站点的 3,276 个健康对照组的不同样本,对各种指标的标准模型进行了预训练。我们用一个双相情感障碍的小型临床样本对模型进行了验证,结果显示,只有在应用了我们的规范建模后,输出结果才与现有文献密切吻合。使用颞叶癫痫数据集进行的进一步验证也表明,模型与之前的群体层面研究结果和个体层面的癫痫发作侧化一致。最后,由于能够在同一框架内研究多种形态学测量,我们发现生物协变量在特定形态学测量中得到了更好的解释,而在临床应用中,只有某些测量对疾病过程敏感。我们的平台为在临床和研究环境中分析大脑形态提供了一个全面的框架。验证证实了常模的优越性以及同时研究一系列脑形态指标的优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Brain Morphology Normative modelling platform for abnormality and Centile estimation: Brain MoNoCle.

Normative models of brain structure estimate the effects of covariates such as age and sex using large samples of healthy controls. These models can then be applied to e.g. smaller clinical cohorts to distinguish disease effects from other covariates. However, these advanced statistical modelling approaches can be difficult to access, and processing large healthy cohorts is computationally demanding. Thus, accessible platforms with pre-trained normative models are needed. We present such a platform for brain morphology analysis as an open-source web application (https://cnnplab.shinyapps.io/BrainMoNoCle/), with six key features: (i) user-friendly web interface, (ii) individual and group outputs, (iii) multi-site analysis, (iv) regional and whole-brain analysis, (v) integration with existing tools, and (vi) featuring multiple morphology metrics. Using a diverse sample of 3,276 healthy controls across 21 sites, we pre-trained normative models on various metrics. We validated the models with a small sample of individuals with bipolar disorder, showing outputs that aligned closely with existing literature only after applying our normative modelling. Using a cohort of people with temporal lobe epilepsy, we showed that individual-level abnormalities were in line with seizure lateralisation. Finally, with the ability to investigate multiple morphology measures in the same framework, we found that biological covariates are better explained in specific morphology measures, and for applications, only some measures are sensitive to the disease process. Our platform offers a comprehensive framework to analyse brain morphology in clinical and research settings. Validations confirm the superiority of normative models and the advantage of investigating a range of brain morphology metrics together.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信