Charlotte Fowler, Xiaoxuan Cai, Justin T Baker, Jukka-Pekka Onnela, Linda Valeri
{"title":"测试移动健康研究单变量时间序列中存在缺失数据时的单位根非平稳性。","authors":"Charlotte Fowler, Xiaoxuan Cai, Justin T Baker, Jukka-Pekka Onnela, Linda Valeri","doi":"10.1093/jrsssc/qlae010","DOIUrl":null,"url":null,"abstract":"<p><p>The use of digital devices to collect data in mobile health studies introduces a novel application of time series methods, with the constraint of potential data missing at random or missing not at random (MNAR). In time-series analysis, testing for stationarity is an important preliminary step to inform appropriate subsequent analyses. The Dickey-Fuller test evaluates the null hypothesis of unit root non-stationarity, under no missing data. Beyond recommendations under data missing completely at random for complete case analysis or last observation carry forward imputation, researchers have not extended unit root non-stationarity testing to more complex missing data mechanisms. Multiple imputation with chained equations, Kalman smoothing imputation, and linear interpolation have also been used for time-series data, however such methods impose constraints on the autocorrelation structure and impact unit root testing. We propose maximum likelihood estimation and multiple imputation using state space model approaches to adapt the augmented Dickey-Fuller test to a context with missing data. We further develop sensitivity analyses to examine the impact of MNAR data. We evaluate the performance of existing and proposed methods across missing mechanisms in extensive simulations and in their application to a multi-year smartphone study of bipolar patients.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-02-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11175825/pdf/","citationCount":"0","resultStr":"{\"title\":\"Testing unit root non-stationarity in the presence of missing data in univariate time series of mobile health studies.\",\"authors\":\"Charlotte Fowler, Xiaoxuan Cai, Justin T Baker, Jukka-Pekka Onnela, Linda Valeri\",\"doi\":\"10.1093/jrsssc/qlae010\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The use of digital devices to collect data in mobile health studies introduces a novel application of time series methods, with the constraint of potential data missing at random or missing not at random (MNAR). In time-series analysis, testing for stationarity is an important preliminary step to inform appropriate subsequent analyses. The Dickey-Fuller test evaluates the null hypothesis of unit root non-stationarity, under no missing data. Beyond recommendations under data missing completely at random for complete case analysis or last observation carry forward imputation, researchers have not extended unit root non-stationarity testing to more complex missing data mechanisms. Multiple imputation with chained equations, Kalman smoothing imputation, and linear interpolation have also been used for time-series data, however such methods impose constraints on the autocorrelation structure and impact unit root testing. We propose maximum likelihood estimation and multiple imputation using state space model approaches to adapt the augmented Dickey-Fuller test to a context with missing data. We further develop sensitivity analyses to examine the impact of MNAR data. We evaluate the performance of existing and proposed methods across missing mechanisms in extensive simulations and in their application to a multi-year smartphone study of bipolar patients.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-02-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11175825/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1093/jrsssc/qlae010\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/6/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/jrsssc/qlae010","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/6/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Testing unit root non-stationarity in the presence of missing data in univariate time series of mobile health studies.
The use of digital devices to collect data in mobile health studies introduces a novel application of time series methods, with the constraint of potential data missing at random or missing not at random (MNAR). In time-series analysis, testing for stationarity is an important preliminary step to inform appropriate subsequent analyses. The Dickey-Fuller test evaluates the null hypothesis of unit root non-stationarity, under no missing data. Beyond recommendations under data missing completely at random for complete case analysis or last observation carry forward imputation, researchers have not extended unit root non-stationarity testing to more complex missing data mechanisms. Multiple imputation with chained equations, Kalman smoothing imputation, and linear interpolation have also been used for time-series data, however such methods impose constraints on the autocorrelation structure and impact unit root testing. We propose maximum likelihood estimation and multiple imputation using state space model approaches to adapt the augmented Dickey-Fuller test to a context with missing data. We further develop sensitivity analyses to examine the impact of MNAR data. We evaluate the performance of existing and proposed methods across missing mechanisms in extensive simulations and in their application to a multi-year smartphone study of bipolar patients.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.