Brenda G Muñoz-Mata, Guadalupe Dorantes-Méndez, Omar Piña-Ramírez
{"title":"利用时空深度学习分类器中的步态信号对帕金森病的严重程度进行分类。","authors":"Brenda G Muñoz-Mata, Guadalupe Dorantes-Méndez, Omar Piña-Ramírez","doi":"10.1007/s11517-024-03148-2","DOIUrl":null,"url":null,"abstract":"<p><p>Parkinson's disease (PD) is a degenerative nervous system disorder involving motor disturbances. Motor alterations affect the gait according to the progression of PD and can be used by experts in movement disorders to rate the severity of the disease. However, this rating depends on the expertise of the clinical specialist. Therefore, the diagnosis may be inaccurate, particularly in the early stages of PD where abnormal gait patterns can result from normal aging or other medical conditions. Consequently, several classification systems have been developed to enhance PD diagnosis. In this paper, a PD gait severity classification algorithm was developed using vertical ground reaction force (VGRF) signals. The VGRF records used are from a public database that includes 93 PD patients and 72 healthy controls adults. The work presented here focuses on modeling each foot's gait stance phase signals using a modified convolutional long deep neural network (CLDNN) architecture. Subsequently, the results of each model are combined to predict PD severity. The classifier performance was evaluated using ten-fold cross-validation. The best-weighted accuracies obtained were 99.296(0.128)% and 99.343(0.182)%, with the Hoehn-Yahr and UPDRS scales, respectively, outperforming previous results presented in the literature. The classifier proposed here can effectively differentiate gait patterns of different PD severity levels based on gait signals of the stance phase.</p>","PeriodicalId":49840,"journal":{"name":"Medical & Biological Engineering & Computing","volume":" ","pages":"3493-3506"},"PeriodicalIF":2.6000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Classification of Parkinson's disease severity using gait stance signals in a spatiotemporal deep learning classifier.\",\"authors\":\"Brenda G Muñoz-Mata, Guadalupe Dorantes-Méndez, Omar Piña-Ramírez\",\"doi\":\"10.1007/s11517-024-03148-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Parkinson's disease (PD) is a degenerative nervous system disorder involving motor disturbances. Motor alterations affect the gait according to the progression of PD and can be used by experts in movement disorders to rate the severity of the disease. However, this rating depends on the expertise of the clinical specialist. Therefore, the diagnosis may be inaccurate, particularly in the early stages of PD where abnormal gait patterns can result from normal aging or other medical conditions. Consequently, several classification systems have been developed to enhance PD diagnosis. In this paper, a PD gait severity classification algorithm was developed using vertical ground reaction force (VGRF) signals. The VGRF records used are from a public database that includes 93 PD patients and 72 healthy controls adults. The work presented here focuses on modeling each foot's gait stance phase signals using a modified convolutional long deep neural network (CLDNN) architecture. Subsequently, the results of each model are combined to predict PD severity. The classifier performance was evaluated using ten-fold cross-validation. The best-weighted accuracies obtained were 99.296(0.128)% and 99.343(0.182)%, with the Hoehn-Yahr and UPDRS scales, respectively, outperforming previous results presented in the literature. The classifier proposed here can effectively differentiate gait patterns of different PD severity levels based on gait signals of the stance phase.</p>\",\"PeriodicalId\":49840,\"journal\":{\"name\":\"Medical & Biological Engineering & Computing\",\"volume\":\" \",\"pages\":\"3493-3506\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Medical & Biological Engineering & Computing\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s11517-024-03148-2\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/6/17 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medical & Biological Engineering & Computing","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s11517-024-03148-2","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/6/17 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
Classification of Parkinson's disease severity using gait stance signals in a spatiotemporal deep learning classifier.
Parkinson's disease (PD) is a degenerative nervous system disorder involving motor disturbances. Motor alterations affect the gait according to the progression of PD and can be used by experts in movement disorders to rate the severity of the disease. However, this rating depends on the expertise of the clinical specialist. Therefore, the diagnosis may be inaccurate, particularly in the early stages of PD where abnormal gait patterns can result from normal aging or other medical conditions. Consequently, several classification systems have been developed to enhance PD diagnosis. In this paper, a PD gait severity classification algorithm was developed using vertical ground reaction force (VGRF) signals. The VGRF records used are from a public database that includes 93 PD patients and 72 healthy controls adults. The work presented here focuses on modeling each foot's gait stance phase signals using a modified convolutional long deep neural network (CLDNN) architecture. Subsequently, the results of each model are combined to predict PD severity. The classifier performance was evaluated using ten-fold cross-validation. The best-weighted accuracies obtained were 99.296(0.128)% and 99.343(0.182)%, with the Hoehn-Yahr and UPDRS scales, respectively, outperforming previous results presented in the literature. The classifier proposed here can effectively differentiate gait patterns of different PD severity levels based on gait signals of the stance phase.
期刊介绍:
Founded in 1963, Medical & Biological Engineering & Computing (MBEC) continues to serve the biomedical engineering community, covering the entire spectrum of biomedical and clinical engineering. The journal presents exciting and vital experimental and theoretical developments in biomedical science and technology, and reports on advances in computer-based methodologies in these multidisciplinary subjects. The journal also incorporates new and evolving technologies including cellular engineering and molecular imaging.
MBEC publishes original research articles as well as reviews and technical notes. Its Rapid Communications category focuses on material of immediate value to the readership, while the Controversies section provides a forum to exchange views on selected issues, stimulating a vigorous and informed debate in this exciting and high profile field.
MBEC is an official journal of the International Federation of Medical and Biological Engineering (IFMBE).