{"title":"心脏 CT 的超分辨率深度学习重建:辐射剂量和焦斑大小对基于任务的图像质量的影响。","authors":"Takafumi Emoto, Yasunori Nagayama, Sentaro Takada, Daisuke Sakabe, Shinsuke Shigematsu, Makoto Goto, Kengo Nakato, Ryuya Yoshida, Ryota Harai, Masafumi Kidoh, Seitaro Oda, Takeshi Nakaura, Toshinori Hirai","doi":"10.1007/s13246-024-01423-y","DOIUrl":null,"url":null,"abstract":"<p><p>This study aimed to evaluate the impact of radiation dose and focal spot size on the image quality of super-resolution deep-learning reconstruction (SR-DLR) in comparison with iterative reconstruction (IR) and normal-resolution DLR (NR-DLR) algorithms for cardiac CT. Catphan-700 phantom was scanned on a 320-row scanner at six radiation doses (small and large focal spots at 1.4-4.3 and 5.8-8.8 mGy, respectively). Images were reconstructed using hybrid-IR, model-based-IR, NR-DLR, and SR-DLR algorithms. Noise properties were evaluated through plotting noise power spectrum (NPS). Spatial resolution was quantified with task-based transfer function (TTF); Polystyrene, Delrin, and Bone-50% inserts were used for low-, intermediate, and high-contrast spatial resolution. The detectability index (d') was calculated. Image noise, noise texture, edge sharpness of low- and intermediate-contrast objects, delineation of fine high-contrast objects, and overall quality of four reconstructions were visually ranked. Results indicated that among four reconstructions, SR-DLR yielded the lowest noise magnitude and NPS peak, as well as the highest average NPS frequency, TTF<sub>50%</sub>, d' values, and visual rank at each radiation dose. For all reconstructions, the intermediate- to high-contrast spatial resolution was maximized at 4.3 mGy, while the lowest noise magnitude and highest d' were attained at 8.8 mGy. SR-DLR at 4.3 mGy exhibited superior noise performance, intermediate- to high-contrast spatial resolution, d' values, and visual rank compared to the other reconstructions at 8.8 mGy. Therefore, SR-DLR may yield superior diagnostic image quality and facilitate radiation dose reduction compared to the other reconstructions, particularly when combined with small focal spot scanning.</p>","PeriodicalId":48490,"journal":{"name":"Physical and Engineering Sciences in Medicine","volume":" ","pages":"1001-1014"},"PeriodicalIF":2.4000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Super-resolution deep-learning reconstruction for cardiac CT: impact of radiation dose and focal spot size on task-based image quality.\",\"authors\":\"Takafumi Emoto, Yasunori Nagayama, Sentaro Takada, Daisuke Sakabe, Shinsuke Shigematsu, Makoto Goto, Kengo Nakato, Ryuya Yoshida, Ryota Harai, Masafumi Kidoh, Seitaro Oda, Takeshi Nakaura, Toshinori Hirai\",\"doi\":\"10.1007/s13246-024-01423-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This study aimed to evaluate the impact of radiation dose and focal spot size on the image quality of super-resolution deep-learning reconstruction (SR-DLR) in comparison with iterative reconstruction (IR) and normal-resolution DLR (NR-DLR) algorithms for cardiac CT. Catphan-700 phantom was scanned on a 320-row scanner at six radiation doses (small and large focal spots at 1.4-4.3 and 5.8-8.8 mGy, respectively). Images were reconstructed using hybrid-IR, model-based-IR, NR-DLR, and SR-DLR algorithms. Noise properties were evaluated through plotting noise power spectrum (NPS). Spatial resolution was quantified with task-based transfer function (TTF); Polystyrene, Delrin, and Bone-50% inserts were used for low-, intermediate, and high-contrast spatial resolution. The detectability index (d') was calculated. Image noise, noise texture, edge sharpness of low- and intermediate-contrast objects, delineation of fine high-contrast objects, and overall quality of four reconstructions were visually ranked. Results indicated that among four reconstructions, SR-DLR yielded the lowest noise magnitude and NPS peak, as well as the highest average NPS frequency, TTF<sub>50%</sub>, d' values, and visual rank at each radiation dose. For all reconstructions, the intermediate- to high-contrast spatial resolution was maximized at 4.3 mGy, while the lowest noise magnitude and highest d' were attained at 8.8 mGy. SR-DLR at 4.3 mGy exhibited superior noise performance, intermediate- to high-contrast spatial resolution, d' values, and visual rank compared to the other reconstructions at 8.8 mGy. Therefore, SR-DLR may yield superior diagnostic image quality and facilitate radiation dose reduction compared to the other reconstructions, particularly when combined with small focal spot scanning.</p>\",\"PeriodicalId\":48490,\"journal\":{\"name\":\"Physical and Engineering Sciences in Medicine\",\"volume\":\" \",\"pages\":\"1001-1014\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical and Engineering Sciences in Medicine\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s13246-024-01423-y\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/6/17 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical and Engineering Sciences in Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s13246-024-01423-y","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/6/17 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
Super-resolution deep-learning reconstruction for cardiac CT: impact of radiation dose and focal spot size on task-based image quality.
This study aimed to evaluate the impact of radiation dose and focal spot size on the image quality of super-resolution deep-learning reconstruction (SR-DLR) in comparison with iterative reconstruction (IR) and normal-resolution DLR (NR-DLR) algorithms for cardiac CT. Catphan-700 phantom was scanned on a 320-row scanner at six radiation doses (small and large focal spots at 1.4-4.3 and 5.8-8.8 mGy, respectively). Images were reconstructed using hybrid-IR, model-based-IR, NR-DLR, and SR-DLR algorithms. Noise properties were evaluated through plotting noise power spectrum (NPS). Spatial resolution was quantified with task-based transfer function (TTF); Polystyrene, Delrin, and Bone-50% inserts were used for low-, intermediate, and high-contrast spatial resolution. The detectability index (d') was calculated. Image noise, noise texture, edge sharpness of low- and intermediate-contrast objects, delineation of fine high-contrast objects, and overall quality of four reconstructions were visually ranked. Results indicated that among four reconstructions, SR-DLR yielded the lowest noise magnitude and NPS peak, as well as the highest average NPS frequency, TTF50%, d' values, and visual rank at each radiation dose. For all reconstructions, the intermediate- to high-contrast spatial resolution was maximized at 4.3 mGy, while the lowest noise magnitude and highest d' were attained at 8.8 mGy. SR-DLR at 4.3 mGy exhibited superior noise performance, intermediate- to high-contrast spatial resolution, d' values, and visual rank compared to the other reconstructions at 8.8 mGy. Therefore, SR-DLR may yield superior diagnostic image quality and facilitate radiation dose reduction compared to the other reconstructions, particularly when combined with small focal spot scanning.