Elaina M Blair, Jennifer L Brown, Dong Li, Patricia A Holden, Michelle A O'Malley
{"title":"元基因组学分析产生了具有聚合物降解潜力的原核厌氧菌的组装基因组。","authors":"Elaina M Blair, Jennifer L Brown, Dong Li, Patricia A Holden, Michelle A O'Malley","doi":"10.1002/btpr.3484","DOIUrl":null,"url":null,"abstract":"<p><p>Anaerobic microbial communities are often highly degradative, such as those found in the herbivore rumen and large-scale anaerobic digesters. Since the microbial communities in these systems degrade recalcitrant organic polymers, we hypothesize that some microbes in anaerobic environments may be involved in man-made plastic association, deformation, or even breakdown. While efforts have been put toward characterizing microbial communities, many microbes remain unidentified until they can be sufficiently cultivated to generate enough genetic material to assemble high-quality metagenome assemblies and reference genomes. In this study, microbial consortia from goat fecal pellets and anaerobic digester sludge were cultivated for over 6 weeks to assemble metagenomes from novel anaerobic taxa with potential degradative activity. To select for microbes with potential plastic-degrading abilities, plastic strips were included in culture, though the presence of plastic did not appear to enrich for particularly degradative consortia, yet it did select for novel species that otherwise may not have been characterized. Whole-genome shotgun sequencing enabled assembly of 72 prokaryotic metagenome-assembled genomes (MAGs) with >90% completion, <5% contamination, and an N50 >10,000 bp; 17 of these MAGs are classified as novel species given their lack of similarity to publicly available genomes and MAGs. These 72 MAGs vary in predicted carbohydrate-degrading abilities, with genes predicted to encode fewer than 10 or up to nearly 400 carbohydrate-active enzymes. Overall, this enrichment strategy enables characterization of less abundant MAGs in a community, and the MAGs identified here can be further mined to advance understanding of degradative anaerobic microbial consortia.</p>","PeriodicalId":8856,"journal":{"name":"Biotechnology Progress","volume":" ","pages":"e3484"},"PeriodicalIF":2.5000,"publicationDate":"2024-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Metagenomics analysis yields assembled genomes from prokaryotic anaerobes with polymer-degrading potential.\",\"authors\":\"Elaina M Blair, Jennifer L Brown, Dong Li, Patricia A Holden, Michelle A O'Malley\",\"doi\":\"10.1002/btpr.3484\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Anaerobic microbial communities are often highly degradative, such as those found in the herbivore rumen and large-scale anaerobic digesters. Since the microbial communities in these systems degrade recalcitrant organic polymers, we hypothesize that some microbes in anaerobic environments may be involved in man-made plastic association, deformation, or even breakdown. While efforts have been put toward characterizing microbial communities, many microbes remain unidentified until they can be sufficiently cultivated to generate enough genetic material to assemble high-quality metagenome assemblies and reference genomes. In this study, microbial consortia from goat fecal pellets and anaerobic digester sludge were cultivated for over 6 weeks to assemble metagenomes from novel anaerobic taxa with potential degradative activity. To select for microbes with potential plastic-degrading abilities, plastic strips were included in culture, though the presence of plastic did not appear to enrich for particularly degradative consortia, yet it did select for novel species that otherwise may not have been characterized. Whole-genome shotgun sequencing enabled assembly of 72 prokaryotic metagenome-assembled genomes (MAGs) with >90% completion, <5% contamination, and an N50 >10,000 bp; 17 of these MAGs are classified as novel species given their lack of similarity to publicly available genomes and MAGs. These 72 MAGs vary in predicted carbohydrate-degrading abilities, with genes predicted to encode fewer than 10 or up to nearly 400 carbohydrate-active enzymes. Overall, this enrichment strategy enables characterization of less abundant MAGs in a community, and the MAGs identified here can be further mined to advance understanding of degradative anaerobic microbial consortia.</p>\",\"PeriodicalId\":8856,\"journal\":{\"name\":\"Biotechnology Progress\",\"volume\":\" \",\"pages\":\"e3484\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-06-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biotechnology Progress\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1002/btpr.3484\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biotechnology Progress","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/btpr.3484","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
Metagenomics analysis yields assembled genomes from prokaryotic anaerobes with polymer-degrading potential.
Anaerobic microbial communities are often highly degradative, such as those found in the herbivore rumen and large-scale anaerobic digesters. Since the microbial communities in these systems degrade recalcitrant organic polymers, we hypothesize that some microbes in anaerobic environments may be involved in man-made plastic association, deformation, or even breakdown. While efforts have been put toward characterizing microbial communities, many microbes remain unidentified until they can be sufficiently cultivated to generate enough genetic material to assemble high-quality metagenome assemblies and reference genomes. In this study, microbial consortia from goat fecal pellets and anaerobic digester sludge were cultivated for over 6 weeks to assemble metagenomes from novel anaerobic taxa with potential degradative activity. To select for microbes with potential plastic-degrading abilities, plastic strips were included in culture, though the presence of plastic did not appear to enrich for particularly degradative consortia, yet it did select for novel species that otherwise may not have been characterized. Whole-genome shotgun sequencing enabled assembly of 72 prokaryotic metagenome-assembled genomes (MAGs) with >90% completion, <5% contamination, and an N50 >10,000 bp; 17 of these MAGs are classified as novel species given their lack of similarity to publicly available genomes and MAGs. These 72 MAGs vary in predicted carbohydrate-degrading abilities, with genes predicted to encode fewer than 10 or up to nearly 400 carbohydrate-active enzymes. Overall, this enrichment strategy enables characterization of less abundant MAGs in a community, and the MAGs identified here can be further mined to advance understanding of degradative anaerobic microbial consortia.
期刊介绍:
Biotechnology Progress , an official, bimonthly publication of the American Institute of Chemical Engineers and its technological community, the Society for Biological Engineering, features peer-reviewed research articles, reviews, and descriptions of emerging techniques for the development and design of new processes, products, and devices for the biotechnology, biopharmaceutical and bioprocess industries.
Widespread interest includes application of biological and engineering principles in fields such as applied cellular physiology and metabolic engineering, biocatalysis and bioreactor design, bioseparations and downstream processing, cell culture and tissue engineering, biosensors and process control, bioinformatics and systems biology, biomaterials and artificial organs, stem cell biology and genetics, and plant biology and food science. Manuscripts concerning the design of related processes, products, or devices are also encouraged. Four types of manuscripts are printed in the Journal: Research Papers, Topical or Review Papers, Letters to the Editor, and R & D Notes.