使用众包技术的 PubChem 同义词过滤过程。

IF 7.1 2区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Sunghwan Kim, Bo Yu, Qingliang Li, Evan E. Bolton
{"title":"使用众包技术的 PubChem 同义词过滤过程。","authors":"Sunghwan Kim,&nbsp;Bo Yu,&nbsp;Qingliang Li,&nbsp;Evan E. Bolton","doi":"10.1186/s13321-024-00868-3","DOIUrl":null,"url":null,"abstract":"<div><p>PubChem (https://pubchem.ncbi.nlm.nih.gov) is a public chemical information resource containing more than 100 million unique chemical structures. One of the most requested tasks in PubChem and other chemical databases is to search chemicals by name (also commonly called a “chemical synonym”). PubChem performs this task by looking up chemical synonym-structure associations provided by individual depositors to PubChem. In addition, these synonyms are used for many purposes, including creating links between chemicals and PubMed articles (using Medical Subject Headings (MeSH) terms). However, these depositor-provided name-structure associations are subject to substantial discrepancies within and between depositors, making it difficult to unambiguously map a chemical name to a specific chemical structure. The present paper describes PubChem’s crowdsourcing-based synonym filtering strategy, which resolves inter- and intra-depositor discrepancies in synonym-structure associations as well as in the chemical-MeSH associations. The PubChem synonym filtering process was developed based on the analysis of four crowd-voting strategies, which differ in the consistency threshold value employed (60% vs 70%) and how to resolve intra-depositor discrepancies (a single vote vs. multiple votes per depositor) prior to inter-depositor crowd-voting. The agreement of voting was determined at six levels of chemical equivalency, which considers varying isotopic composition, stereochemistry, and connectivity of chemical structures and their primary components. While all four strategies showed comparable results, Strategy I (one vote per depositor with a 60% consistency threshold) resulted in the most synonyms assigned to a single chemical structure as well as the most synonym-structure associations disambiguated at the six chemical equivalency contexts. Based on the results of this study, Strategy I was implemented in PubChem’s filtering process that cleans up synonym-structure associations as well as chemical-MeSH associations. This consistency-based filtering process is designed to look for a consensus in name-structure associations but cannot attest to their correctness. As a result, it can fail to recognize correct name-structure associations (or incorrect ones), for example, when a synonym is provided by only one depositor or when many contributors are incorrect. However, this filtering process is an important starting point for quality control in name-structure associations in large chemical databases like PubChem.</p></div>","PeriodicalId":617,"journal":{"name":"Journal of Cheminformatics","volume":"16 1","pages":""},"PeriodicalIF":7.1000,"publicationDate":"2024-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://jcheminf.biomedcentral.com/counter/pdf/10.1186/s13321-024-00868-3","citationCount":"0","resultStr":"{\"title\":\"PubChem synonym filtering process using crowdsourcing\",\"authors\":\"Sunghwan Kim,&nbsp;Bo Yu,&nbsp;Qingliang Li,&nbsp;Evan E. Bolton\",\"doi\":\"10.1186/s13321-024-00868-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>PubChem (https://pubchem.ncbi.nlm.nih.gov) is a public chemical information resource containing more than 100 million unique chemical structures. One of the most requested tasks in PubChem and other chemical databases is to search chemicals by name (also commonly called a “chemical synonym”). PubChem performs this task by looking up chemical synonym-structure associations provided by individual depositors to PubChem. In addition, these synonyms are used for many purposes, including creating links between chemicals and PubMed articles (using Medical Subject Headings (MeSH) terms). However, these depositor-provided name-structure associations are subject to substantial discrepancies within and between depositors, making it difficult to unambiguously map a chemical name to a specific chemical structure. The present paper describes PubChem’s crowdsourcing-based synonym filtering strategy, which resolves inter- and intra-depositor discrepancies in synonym-structure associations as well as in the chemical-MeSH associations. The PubChem synonym filtering process was developed based on the analysis of four crowd-voting strategies, which differ in the consistency threshold value employed (60% vs 70%) and how to resolve intra-depositor discrepancies (a single vote vs. multiple votes per depositor) prior to inter-depositor crowd-voting. The agreement of voting was determined at six levels of chemical equivalency, which considers varying isotopic composition, stereochemistry, and connectivity of chemical structures and their primary components. While all four strategies showed comparable results, Strategy I (one vote per depositor with a 60% consistency threshold) resulted in the most synonyms assigned to a single chemical structure as well as the most synonym-structure associations disambiguated at the six chemical equivalency contexts. Based on the results of this study, Strategy I was implemented in PubChem’s filtering process that cleans up synonym-structure associations as well as chemical-MeSH associations. This consistency-based filtering process is designed to look for a consensus in name-structure associations but cannot attest to their correctness. As a result, it can fail to recognize correct name-structure associations (or incorrect ones), for example, when a synonym is provided by only one depositor or when many contributors are incorrect. However, this filtering process is an important starting point for quality control in name-structure associations in large chemical databases like PubChem.</p></div>\",\"PeriodicalId\":617,\"journal\":{\"name\":\"Journal of Cheminformatics\",\"volume\":\"16 1\",\"pages\":\"\"},\"PeriodicalIF\":7.1000,\"publicationDate\":\"2024-06-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://jcheminf.biomedcentral.com/counter/pdf/10.1186/s13321-024-00868-3\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Cheminformatics\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://link.springer.com/article/10.1186/s13321-024-00868-3\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cheminformatics","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1186/s13321-024-00868-3","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

PubChem ( https://pubchem.ncbi.nlm.nih.gov ) 是一个公共化学信息资源,包含 1 亿多种独特的化学结构。PubChem 和其他化学数据库中最常见的任务之一是通过名称(通常也称为 "化学同义词")搜索化学物质。PubChem 通过查找由 PubChem 的个人保存者提供的化学同义词-结构关联来完成这项任务。此外,这些同义词还可用于多种用途,包括在化学品和 PubMed 文章之间建立链接(使用医学主题词表 (MeSH) 术语)。然而,这些保存者提供的名称-结构关联在保存者内部和保存者之间存在很大差异,因此很难明确地将化学名称映射到特定的化学结构。本文介绍了 PubChem 基于众包的同义词过滤策略,该策略可以解决同义词-结构关联以及化学物质-MeSH 关联中存管者之间和存管者内部的差异。PubChem 的同义词过滤流程是在对四种众包投票策略进行分析的基础上开发的,这四种策略的不同之处在于所采用的一致性阈值(60% 与 70%),以及在储户间众包投票之前如何解决储户内差异(每个储户单票与多票)。考虑到化学结构及其主要成分的同位素组成、立体化学和连接性的不同,在六个化学等效水平上确定了投票的一致性。虽然所有四种策略都显示出了相似的结果,但策略 I(每个保存人投一票,一致性阈值为 60%)导致分配给单个化学结构的同义词最多,以及在六个化学等效上下文中消除的同义词-结构关联最多。根据这项研究的结果,在 PubChem 的过滤过程中实施了策略 I,以清除同义词-结构关联以及化学-MeSH 关联。这种基于一致性的过滤程序旨在寻找名称-结构关联的共识,但无法证明其正确性。因此,它可能无法识别正确的名称-结构关联(或不正确的名称-结构关联),例如,当一个同义词仅由一个保存者提供或许多贡献者都不正确时。不过,这一过滤过程是 PubChem 等大型化学数据库中名称-结构关联质量控制的重要起点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
PubChem synonym filtering process using crowdsourcing

PubChem (https://pubchem.ncbi.nlm.nih.gov) is a public chemical information resource containing more than 100 million unique chemical structures. One of the most requested tasks in PubChem and other chemical databases is to search chemicals by name (also commonly called a “chemical synonym”). PubChem performs this task by looking up chemical synonym-structure associations provided by individual depositors to PubChem. In addition, these synonyms are used for many purposes, including creating links between chemicals and PubMed articles (using Medical Subject Headings (MeSH) terms). However, these depositor-provided name-structure associations are subject to substantial discrepancies within and between depositors, making it difficult to unambiguously map a chemical name to a specific chemical structure. The present paper describes PubChem’s crowdsourcing-based synonym filtering strategy, which resolves inter- and intra-depositor discrepancies in synonym-structure associations as well as in the chemical-MeSH associations. The PubChem synonym filtering process was developed based on the analysis of four crowd-voting strategies, which differ in the consistency threshold value employed (60% vs 70%) and how to resolve intra-depositor discrepancies (a single vote vs. multiple votes per depositor) prior to inter-depositor crowd-voting. The agreement of voting was determined at six levels of chemical equivalency, which considers varying isotopic composition, stereochemistry, and connectivity of chemical structures and their primary components. While all four strategies showed comparable results, Strategy I (one vote per depositor with a 60% consistency threshold) resulted in the most synonyms assigned to a single chemical structure as well as the most synonym-structure associations disambiguated at the six chemical equivalency contexts. Based on the results of this study, Strategy I was implemented in PubChem’s filtering process that cleans up synonym-structure associations as well as chemical-MeSH associations. This consistency-based filtering process is designed to look for a consensus in name-structure associations but cannot attest to their correctness. As a result, it can fail to recognize correct name-structure associations (or incorrect ones), for example, when a synonym is provided by only one depositor or when many contributors are incorrect. However, this filtering process is an important starting point for quality control in name-structure associations in large chemical databases like PubChem.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Cheminformatics
Journal of Cheminformatics CHEMISTRY, MULTIDISCIPLINARY-COMPUTER SCIENCE, INFORMATION SYSTEMS
CiteScore
14.10
自引率
7.00%
发文量
82
审稿时长
3 months
期刊介绍: Journal of Cheminformatics is an open access journal publishing original peer-reviewed research in all aspects of cheminformatics and molecular modelling. Coverage includes, but is not limited to: chemical information systems, software and databases, and molecular modelling, chemical structure representations and their use in structure, substructure, and similarity searching of chemical substance and chemical reaction databases, computer and molecular graphics, computer-aided molecular design, expert systems, QSAR, and data mining techniques.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信