Xiaoming Jiang , Yongxin Yang , Tong Su , Kai Xiao , LiDan Lu , Wei Wang , Changsong Guo , Lizhi Shao , Mingjing Wang , Dong Jiang
{"title":"基于特征和边缘对齐的无监督域适应性股骨 X 射线图像分割","authors":"Xiaoming Jiang , Yongxin Yang , Tong Su , Kai Xiao , LiDan Lu , Wei Wang , Changsong Guo , Lizhi Shao , Mingjing Wang , Dong Jiang","doi":"10.1016/j.compmedimag.2024.102407","DOIUrl":null,"url":null,"abstract":"<div><p>The gold standard for diagnosing osteoporosis is bone mineral density (BMD) measurement by dual-energy X-ray absorptiometry (DXA). However, various factors during the imaging process cause domain shifts in DXA images, which lead to incorrect bone segmentation. Research shows that poor bone segmentation is one of the prime reasons of inaccurate BMD measurement, severely affecting the diagnosis and treatment plans for osteoporosis. In this paper, we propose a Multi-feature Joint Discriminative Domain Adaptation (MDDA) framework to improve segmentation performance and the generalization of the network in domain-shifted images. The proposed method learns domain-invariant features between the source and target domains from the perspectives of multi-scale features and edges, and is evaluated on real data from multi-center datasets. Compared to other state-of-the-art methods, the feature prior from the source domain and edge prior enable the proposed MDDA to achieve the optimal domain adaptation performance and generalization. It also demonstrates superior performance in domain adaptation tasks on small amount datasets, even using only 5 or 10 images. In this study, MDDA provides an accurate bone segmentation tool for BMD measurement based on DXA imaging.</p></div>","PeriodicalId":50631,"journal":{"name":"Computerized Medical Imaging and Graphics","volume":"116 ","pages":"Article 102407"},"PeriodicalIF":5.4000,"publicationDate":"2024-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Unsupervised domain adaptation based on feature and edge alignment for femur X-ray image segmentation\",\"authors\":\"Xiaoming Jiang , Yongxin Yang , Tong Su , Kai Xiao , LiDan Lu , Wei Wang , Changsong Guo , Lizhi Shao , Mingjing Wang , Dong Jiang\",\"doi\":\"10.1016/j.compmedimag.2024.102407\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The gold standard for diagnosing osteoporosis is bone mineral density (BMD) measurement by dual-energy X-ray absorptiometry (DXA). However, various factors during the imaging process cause domain shifts in DXA images, which lead to incorrect bone segmentation. Research shows that poor bone segmentation is one of the prime reasons of inaccurate BMD measurement, severely affecting the diagnosis and treatment plans for osteoporosis. In this paper, we propose a Multi-feature Joint Discriminative Domain Adaptation (MDDA) framework to improve segmentation performance and the generalization of the network in domain-shifted images. The proposed method learns domain-invariant features between the source and target domains from the perspectives of multi-scale features and edges, and is evaluated on real data from multi-center datasets. Compared to other state-of-the-art methods, the feature prior from the source domain and edge prior enable the proposed MDDA to achieve the optimal domain adaptation performance and generalization. It also demonstrates superior performance in domain adaptation tasks on small amount datasets, even using only 5 or 10 images. In this study, MDDA provides an accurate bone segmentation tool for BMD measurement based on DXA imaging.</p></div>\",\"PeriodicalId\":50631,\"journal\":{\"name\":\"Computerized Medical Imaging and Graphics\",\"volume\":\"116 \",\"pages\":\"Article 102407\"},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2024-06-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computerized Medical Imaging and Graphics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0895611124000843\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computerized Medical Imaging and Graphics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0895611124000843","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
Unsupervised domain adaptation based on feature and edge alignment for femur X-ray image segmentation
The gold standard for diagnosing osteoporosis is bone mineral density (BMD) measurement by dual-energy X-ray absorptiometry (DXA). However, various factors during the imaging process cause domain shifts in DXA images, which lead to incorrect bone segmentation. Research shows that poor bone segmentation is one of the prime reasons of inaccurate BMD measurement, severely affecting the diagnosis and treatment plans for osteoporosis. In this paper, we propose a Multi-feature Joint Discriminative Domain Adaptation (MDDA) framework to improve segmentation performance and the generalization of the network in domain-shifted images. The proposed method learns domain-invariant features between the source and target domains from the perspectives of multi-scale features and edges, and is evaluated on real data from multi-center datasets. Compared to other state-of-the-art methods, the feature prior from the source domain and edge prior enable the proposed MDDA to achieve the optimal domain adaptation performance and generalization. It also demonstrates superior performance in domain adaptation tasks on small amount datasets, even using only 5 or 10 images. In this study, MDDA provides an accurate bone segmentation tool for BMD measurement based on DXA imaging.
期刊介绍:
The purpose of the journal Computerized Medical Imaging and Graphics is to act as a source for the exchange of research results concerning algorithmic advances, development, and application of digital imaging in disease detection, diagnosis, intervention, prevention, precision medicine, and population health. Included in the journal will be articles on novel computerized imaging or visualization techniques, including artificial intelligence and machine learning, augmented reality for surgical planning and guidance, big biomedical data visualization, computer-aided diagnosis, computerized-robotic surgery, image-guided therapy, imaging scanning and reconstruction, mobile and tele-imaging, radiomics, and imaging integration and modeling with other information relevant to digital health. The types of biomedical imaging include: magnetic resonance, computed tomography, ultrasound, nuclear medicine, X-ray, microwave, optical and multi-photon microscopy, video and sensory imaging, and the convergence of biomedical images with other non-imaging datasets.