{"title":"保持经典区分度和神经区分度的平衡","authors":"Gao Wang, Gaoli Wang","doi":"10.1016/j.jisa.2024.103816","DOIUrl":null,"url":null,"abstract":"<div><p>At CRYPTO 2019, Gohr pioneered the use of the neural distinguisher (<span><math><mrow><mi>N</mi><mi>D</mi></mrow></math></span>) for differential cryptanalysis, sparking growing interest in this approach. However, a key limitation of <span><math><mrow><mi>N</mi><mi>D</mi></mrow></math></span> is its inability to analyze as many rounds as the classical differential distinguisher (<span><math><mrow><mi>C</mi><mi>D</mi></mrow></math></span>). To overcome this, researchers have begun combining <span><math><mrow><mi>N</mi><mi>D</mi></mrow></math></span> with <span><math><mrow><mi>C</mi><mi>D</mi></mrow></math></span> into a classical-neural distinguisher (<span><math><mrow><mi>C</mi><mi>N</mi><mi>D</mi></mrow></math></span>) for differential cryptanalysis. Nevertheless, the optimal integration of <span><math><mrow><mi>C</mi><mi>D</mi></mrow></math></span> and <span><math><mrow><mi>N</mi><mi>D</mi></mrow></math></span> remains an under-studied and unresolved challenge.</p><p>In this paper, we introduce a superior approach for constructing the <span><math><mrow><mo>(</mo><mi>r</mi><mo>+</mo><mi>s</mi><mo>)</mo></mrow></math></span>-round differential distinguisher <span><math><mrow><mi>C</mi><mi>N</mi><msub><mrow><mi>D</mi></mrow><mrow><mi>r</mi><mo>+</mo><mi>s</mi></mrow></msub></mrow></math></span> by keeping the <span><math><mi>r</mi></math></span>-round classical distinguisher <span><math><mrow><mi>C</mi><msub><mrow><mi>D</mi></mrow><mrow><mi>r</mi></mrow></msub></mrow></math></span> and the <span><math><mi>s</mi></math></span>-round neural distinguisher <span><math><mrow><mi>N</mi><msub><mrow><mi>D</mi></mrow><mrow><mi>s</mi></mrow></msub></mrow></math></span> in balance. Through experimental analysis, we find that the data complexity of <span><math><mrow><mi>C</mi><mi>N</mi><msub><mrow><mi>D</mi></mrow><mrow><mi>r</mi><mo>+</mo><mi>s</mi></mrow></msub></mrow></math></span> closely approximates the product of that for <span><math><mrow><mi>C</mi><msub><mrow><mi>D</mi></mrow><mrow><mi>r</mi></mrow></msub></mrow></math></span> and <span><math><mrow><mi>N</mi><msub><mrow><mi>D</mi></mrow><mrow><mi>s</mi></mrow></msub></mrow></math></span>. This finding highlights the limitations of current strategies. Subsequently, we introduce an enhanced scheme for constructing <span><math><mrow><mi>C</mi><mi>N</mi><msub><mrow><mi>D</mi></mrow><mrow><mi>r</mi><mo>+</mo><mi>s</mi></mrow></msub></mrow></math></span>, which comprises three main components: a new method for searching the suitable differential characteristics, a scheme for constructing the neural distinguisher, and an accelerated evaluation strategy for the data complexity of <span><math><mrow><mi>C</mi><mi>N</mi><msub><mrow><mi>D</mi></mrow><mrow><mi>r</mi><mo>+</mo><mi>s</mi></mrow></msub></mrow></math></span>. To validate the effectiveness of our approach, we apply it to the round-reduced Simon32, Speck32 and Present64, achieving improved results. Specifically, for Simon32, our <span><math><mrow><mi>C</mi><mi>N</mi><msub><mrow><mi>D</mi></mrow><mrow><mn>12</mn></mrow></msub></mrow></math></span> and <span><math><mrow><mi>C</mi><mi>N</mi><msub><mrow><mi>D</mi></mrow><mrow><mn>13</mn></mrow></msub></mrow></math></span> exhibit data complexities of <span><math><msup><mrow><mn>2</mn></mrow><mrow><mn>16</mn></mrow></msup></math></span> and <span><math><msup><mrow><mn>2</mn></mrow><mrow><mn>21</mn></mrow></msup></math></span>, respectively, whereas <span><math><mrow><mi>C</mi><mi>N</mi><msub><mrow><mi>D</mi></mrow><mrow><mn>12</mn></mrow></msub></mrow></math></span> in prior work required a data complexity of <span><math><msup><mrow><mn>2</mn></mrow><mrow><mn>22</mn></mrow></msup></math></span>. In the case of Speck32, Our scheme reduce the data complexity of <span><math><mrow><mi>C</mi><mi>N</mi><msub><mrow><mi>D</mi></mrow><mrow><mn>9</mn></mrow></msub></mrow></math></span> form <span><math><msup><mrow><mn>2</mn></mrow><mrow><mn>20</mn></mrow></msup></math></span> to <span><math><msup><mrow><mn>2</mn></mrow><mrow><mn>18</mn></mrow></msup></math></span>. For Present64, We construct <span><math><mrow><mi>C</mi><mi>N</mi><msub><mrow><mi>D</mi></mrow><mrow><mn>8</mn></mrow></msub></mrow></math></span> with a data complexity of <span><math><msup><mrow><mn>2</mn></mrow><mrow><mn>13</mn></mrow></msup></math></span>, a significant improvement over the classical distinguisher of <span><math><msup><mrow><mn>2</mn></mrow><mrow><mn>32</mn></mrow></msup></math></span>. These results demonstrate the superiority of our scheme.</p></div>","PeriodicalId":48638,"journal":{"name":"Journal of Information Security and Applications","volume":"84 ","pages":"Article 103816"},"PeriodicalIF":3.8000,"publicationDate":"2024-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Keeping classical distinguisher and neural distinguisher in balance\",\"authors\":\"Gao Wang, Gaoli Wang\",\"doi\":\"10.1016/j.jisa.2024.103816\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>At CRYPTO 2019, Gohr pioneered the use of the neural distinguisher (<span><math><mrow><mi>N</mi><mi>D</mi></mrow></math></span>) for differential cryptanalysis, sparking growing interest in this approach. However, a key limitation of <span><math><mrow><mi>N</mi><mi>D</mi></mrow></math></span> is its inability to analyze as many rounds as the classical differential distinguisher (<span><math><mrow><mi>C</mi><mi>D</mi></mrow></math></span>). To overcome this, researchers have begun combining <span><math><mrow><mi>N</mi><mi>D</mi></mrow></math></span> with <span><math><mrow><mi>C</mi><mi>D</mi></mrow></math></span> into a classical-neural distinguisher (<span><math><mrow><mi>C</mi><mi>N</mi><mi>D</mi></mrow></math></span>) for differential cryptanalysis. Nevertheless, the optimal integration of <span><math><mrow><mi>C</mi><mi>D</mi></mrow></math></span> and <span><math><mrow><mi>N</mi><mi>D</mi></mrow></math></span> remains an under-studied and unresolved challenge.</p><p>In this paper, we introduce a superior approach for constructing the <span><math><mrow><mo>(</mo><mi>r</mi><mo>+</mo><mi>s</mi><mo>)</mo></mrow></math></span>-round differential distinguisher <span><math><mrow><mi>C</mi><mi>N</mi><msub><mrow><mi>D</mi></mrow><mrow><mi>r</mi><mo>+</mo><mi>s</mi></mrow></msub></mrow></math></span> by keeping the <span><math><mi>r</mi></math></span>-round classical distinguisher <span><math><mrow><mi>C</mi><msub><mrow><mi>D</mi></mrow><mrow><mi>r</mi></mrow></msub></mrow></math></span> and the <span><math><mi>s</mi></math></span>-round neural distinguisher <span><math><mrow><mi>N</mi><msub><mrow><mi>D</mi></mrow><mrow><mi>s</mi></mrow></msub></mrow></math></span> in balance. Through experimental analysis, we find that the data complexity of <span><math><mrow><mi>C</mi><mi>N</mi><msub><mrow><mi>D</mi></mrow><mrow><mi>r</mi><mo>+</mo><mi>s</mi></mrow></msub></mrow></math></span> closely approximates the product of that for <span><math><mrow><mi>C</mi><msub><mrow><mi>D</mi></mrow><mrow><mi>r</mi></mrow></msub></mrow></math></span> and <span><math><mrow><mi>N</mi><msub><mrow><mi>D</mi></mrow><mrow><mi>s</mi></mrow></msub></mrow></math></span>. This finding highlights the limitations of current strategies. Subsequently, we introduce an enhanced scheme for constructing <span><math><mrow><mi>C</mi><mi>N</mi><msub><mrow><mi>D</mi></mrow><mrow><mi>r</mi><mo>+</mo><mi>s</mi></mrow></msub></mrow></math></span>, which comprises three main components: a new method for searching the suitable differential characteristics, a scheme for constructing the neural distinguisher, and an accelerated evaluation strategy for the data complexity of <span><math><mrow><mi>C</mi><mi>N</mi><msub><mrow><mi>D</mi></mrow><mrow><mi>r</mi><mo>+</mo><mi>s</mi></mrow></msub></mrow></math></span>. To validate the effectiveness of our approach, we apply it to the round-reduced Simon32, Speck32 and Present64, achieving improved results. Specifically, for Simon32, our <span><math><mrow><mi>C</mi><mi>N</mi><msub><mrow><mi>D</mi></mrow><mrow><mn>12</mn></mrow></msub></mrow></math></span> and <span><math><mrow><mi>C</mi><mi>N</mi><msub><mrow><mi>D</mi></mrow><mrow><mn>13</mn></mrow></msub></mrow></math></span> exhibit data complexities of <span><math><msup><mrow><mn>2</mn></mrow><mrow><mn>16</mn></mrow></msup></math></span> and <span><math><msup><mrow><mn>2</mn></mrow><mrow><mn>21</mn></mrow></msup></math></span>, respectively, whereas <span><math><mrow><mi>C</mi><mi>N</mi><msub><mrow><mi>D</mi></mrow><mrow><mn>12</mn></mrow></msub></mrow></math></span> in prior work required a data complexity of <span><math><msup><mrow><mn>2</mn></mrow><mrow><mn>22</mn></mrow></msup></math></span>. In the case of Speck32, Our scheme reduce the data complexity of <span><math><mrow><mi>C</mi><mi>N</mi><msub><mrow><mi>D</mi></mrow><mrow><mn>9</mn></mrow></msub></mrow></math></span> form <span><math><msup><mrow><mn>2</mn></mrow><mrow><mn>20</mn></mrow></msup></math></span> to <span><math><msup><mrow><mn>2</mn></mrow><mrow><mn>18</mn></mrow></msup></math></span>. For Present64, We construct <span><math><mrow><mi>C</mi><mi>N</mi><msub><mrow><mi>D</mi></mrow><mrow><mn>8</mn></mrow></msub></mrow></math></span> with a data complexity of <span><math><msup><mrow><mn>2</mn></mrow><mrow><mn>13</mn></mrow></msup></math></span>, a significant improvement over the classical distinguisher of <span><math><msup><mrow><mn>2</mn></mrow><mrow><mn>32</mn></mrow></msup></math></span>. These results demonstrate the superiority of our scheme.</p></div>\",\"PeriodicalId\":48638,\"journal\":{\"name\":\"Journal of Information Security and Applications\",\"volume\":\"84 \",\"pages\":\"Article 103816\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2024-06-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Information Security and Applications\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2214212624001194\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Information Security and Applications","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214212624001194","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
Keeping classical distinguisher and neural distinguisher in balance
At CRYPTO 2019, Gohr pioneered the use of the neural distinguisher () for differential cryptanalysis, sparking growing interest in this approach. However, a key limitation of is its inability to analyze as many rounds as the classical differential distinguisher (). To overcome this, researchers have begun combining with into a classical-neural distinguisher () for differential cryptanalysis. Nevertheless, the optimal integration of and remains an under-studied and unresolved challenge.
In this paper, we introduce a superior approach for constructing the -round differential distinguisher by keeping the -round classical distinguisher and the -round neural distinguisher in balance. Through experimental analysis, we find that the data complexity of closely approximates the product of that for and . This finding highlights the limitations of current strategies. Subsequently, we introduce an enhanced scheme for constructing , which comprises three main components: a new method for searching the suitable differential characteristics, a scheme for constructing the neural distinguisher, and an accelerated evaluation strategy for the data complexity of . To validate the effectiveness of our approach, we apply it to the round-reduced Simon32, Speck32 and Present64, achieving improved results. Specifically, for Simon32, our and exhibit data complexities of and , respectively, whereas in prior work required a data complexity of . In the case of Speck32, Our scheme reduce the data complexity of form to . For Present64, We construct with a data complexity of , a significant improvement over the classical distinguisher of . These results demonstrate the superiority of our scheme.
期刊介绍:
Journal of Information Security and Applications (JISA) focuses on the original research and practice-driven applications with relevance to information security and applications. JISA provides a common linkage between a vibrant scientific and research community and industry professionals by offering a clear view on modern problems and challenges in information security, as well as identifying promising scientific and "best-practice" solutions. JISA issues offer a balance between original research work and innovative industrial approaches by internationally renowned information security experts and researchers.