基于混合模型的加工残余应力反分析

Zheng-Yan Yang , Markus Meurer , Dong Zhang , Xiao-Ming Zhang , Han Ding
{"title":"基于混合模型的加工残余应力反分析","authors":"Zheng-Yan Yang ,&nbsp;Markus Meurer ,&nbsp;Dong Zhang ,&nbsp;Xiao-Ming Zhang ,&nbsp;Han Ding","doi":"10.1016/j.procir.2024.05.031","DOIUrl":null,"url":null,"abstract":"<div><p>Machining-induced residual stress significantly impacts the fatigue life and service performance of machined components. Appropriate compressive residual stress can enhance resistance to crack initiation, while tensile residual stress may be detrimental. In this study, an inverse analysis is conducted to optimize the cutting parameters for achieving desired residual stresses. The analysis begins by predicting the machining-induced thermal-mechanical loads in the primary shear zones using analytical methods. Subsequently, an Arbitrary Lagrangian-Eulerian (ALE) based numerical model is proposed to calculate the resulting residual stresses by incorporating the determined thermal-mechanical loads. This analytical-numerical hybrid method facilitates rapid and accurate modeling of residual stresses. Then, the Newton’s method is employed to deduce cutting parameters iteratively, ensuring a proper residual stress. Finally, the results of inverse analysis are compared with experimental measurements to validate its efficacy.</p></div>","PeriodicalId":20535,"journal":{"name":"Procedia CIRP","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S221282712400235X/pdf?md5=efc7e671bb2fe44daa260d690dec8459&pid=1-s2.0-S221282712400235X-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Inverse analysis of machining residual stress based on hybrid model\",\"authors\":\"Zheng-Yan Yang ,&nbsp;Markus Meurer ,&nbsp;Dong Zhang ,&nbsp;Xiao-Ming Zhang ,&nbsp;Han Ding\",\"doi\":\"10.1016/j.procir.2024.05.031\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Machining-induced residual stress significantly impacts the fatigue life and service performance of machined components. Appropriate compressive residual stress can enhance resistance to crack initiation, while tensile residual stress may be detrimental. In this study, an inverse analysis is conducted to optimize the cutting parameters for achieving desired residual stresses. The analysis begins by predicting the machining-induced thermal-mechanical loads in the primary shear zones using analytical methods. Subsequently, an Arbitrary Lagrangian-Eulerian (ALE) based numerical model is proposed to calculate the resulting residual stresses by incorporating the determined thermal-mechanical loads. This analytical-numerical hybrid method facilitates rapid and accurate modeling of residual stresses. Then, the Newton’s method is employed to deduce cutting parameters iteratively, ensuring a proper residual stress. Finally, the results of inverse analysis are compared with experimental measurements to validate its efficacy.</p></div>\",\"PeriodicalId\":20535,\"journal\":{\"name\":\"Procedia CIRP\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S221282712400235X/pdf?md5=efc7e671bb2fe44daa260d690dec8459&pid=1-s2.0-S221282712400235X-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Procedia CIRP\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S221282712400235X\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Procedia CIRP","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S221282712400235X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

机加工引起的残余应力会严重影响机加工部件的疲劳寿命和使用性能。适当的压缩残余应力可增强抗裂纹萌生的能力,而拉伸残余应力则可能有害。在这项研究中,我们进行了一项逆向分析,以优化切削参数,获得理想的残余应力。分析首先使用分析方法预测主要剪切区中由加工引起的热机械载荷。随后,提出了一种基于任意拉格朗日-欧勒(ALE)的数值模型,通过结合确定的热机械载荷来计算所产生的残余应力。这种分析-数值混合方法有助于快速、准确地建立残余应力模型。然后,采用牛顿法迭代推导切削参数,确保适当的残余应力。最后,将反分析结果与实验测量结果进行比较,以验证其有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Inverse analysis of machining residual stress based on hybrid model

Machining-induced residual stress significantly impacts the fatigue life and service performance of machined components. Appropriate compressive residual stress can enhance resistance to crack initiation, while tensile residual stress may be detrimental. In this study, an inverse analysis is conducted to optimize the cutting parameters for achieving desired residual stresses. The analysis begins by predicting the machining-induced thermal-mechanical loads in the primary shear zones using analytical methods. Subsequently, an Arbitrary Lagrangian-Eulerian (ALE) based numerical model is proposed to calculate the resulting residual stresses by incorporating the determined thermal-mechanical loads. This analytical-numerical hybrid method facilitates rapid and accurate modeling of residual stresses. Then, the Newton’s method is employed to deduce cutting parameters iteratively, ensuring a proper residual stress. Finally, the results of inverse analysis are compared with experimental measurements to validate its efficacy.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.80
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信