Seyederfan Mojtahedi, Amir K. Ghorbani-Tanha, Hossein Rahami
{"title":"用于结构损伤检测的饥荒算法和伪动能","authors":"Seyederfan Mojtahedi, Amir K. Ghorbani-Tanha, Hossein Rahami","doi":"10.1155/2024/2228698","DOIUrl":null,"url":null,"abstract":"<div>\n <p>In this study, a novel damage detection framework for skeletal structures is presented. The introduced scheme is based on the optimization-based model updating method. A new multipopulation framework, namely, the Famine Algorithm, is introduced that hopes to reduce the number of objective function evaluations needed. Furthermore, using static displacement patterns, a damage-sensitive feature named pseudo-kinetic energy is presented. By exploiting the new feature, an efficient cost function is developed. Two mathematical benchmark problems and a two-membered truss for damage detection problem are depicted in 2D space to track the search behavior of the Famine Algorithm and show the changes in the search space when using the new feature. Four numerical examples, including three trusses and a frame structure, are used to evaluate the overall performance of the proposed damage detection methods. Moreover, an experimental shear frame is studied to test the performance of the suggested method in real-life problems. The obtained results of the examples reveal that the proposed method can identify and quantify the damaged elements accurately by only utilizing the first five vibrating modes, even in noise-contaminated conditions.</p>\n </div>","PeriodicalId":49471,"journal":{"name":"Structural Control & Health Monitoring","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1155/2024/2228698","citationCount":"0","resultStr":"{\"title\":\"Famine Algorithm and Pseudo-Kinetic Energy for Structural Damage Detection\",\"authors\":\"Seyederfan Mojtahedi, Amir K. Ghorbani-Tanha, Hossein Rahami\",\"doi\":\"10.1155/2024/2228698\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n <p>In this study, a novel damage detection framework for skeletal structures is presented. The introduced scheme is based on the optimization-based model updating method. A new multipopulation framework, namely, the Famine Algorithm, is introduced that hopes to reduce the number of objective function evaluations needed. Furthermore, using static displacement patterns, a damage-sensitive feature named pseudo-kinetic energy is presented. By exploiting the new feature, an efficient cost function is developed. Two mathematical benchmark problems and a two-membered truss for damage detection problem are depicted in 2D space to track the search behavior of the Famine Algorithm and show the changes in the search space when using the new feature. Four numerical examples, including three trusses and a frame structure, are used to evaluate the overall performance of the proposed damage detection methods. Moreover, an experimental shear frame is studied to test the performance of the suggested method in real-life problems. The obtained results of the examples reveal that the proposed method can identify and quantify the damaged elements accurately by only utilizing the first five vibrating modes, even in noise-contaminated conditions.</p>\\n </div>\",\"PeriodicalId\":49471,\"journal\":{\"name\":\"Structural Control & Health Monitoring\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-06-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1155/2024/2228698\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Structural Control & Health Monitoring\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1155/2024/2228698\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CONSTRUCTION & BUILDING TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Structural Control & Health Monitoring","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1155/2024/2228698","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
Famine Algorithm and Pseudo-Kinetic Energy for Structural Damage Detection
In this study, a novel damage detection framework for skeletal structures is presented. The introduced scheme is based on the optimization-based model updating method. A new multipopulation framework, namely, the Famine Algorithm, is introduced that hopes to reduce the number of objective function evaluations needed. Furthermore, using static displacement patterns, a damage-sensitive feature named pseudo-kinetic energy is presented. By exploiting the new feature, an efficient cost function is developed. Two mathematical benchmark problems and a two-membered truss for damage detection problem are depicted in 2D space to track the search behavior of the Famine Algorithm and show the changes in the search space when using the new feature. Four numerical examples, including three trusses and a frame structure, are used to evaluate the overall performance of the proposed damage detection methods. Moreover, an experimental shear frame is studied to test the performance of the suggested method in real-life problems. The obtained results of the examples reveal that the proposed method can identify and quantify the damaged elements accurately by only utilizing the first five vibrating modes, even in noise-contaminated conditions.
期刊介绍:
The Journal Structural Control and Health Monitoring encompasses all theoretical and technological aspects of structural control, structural health monitoring theory and smart materials and structures. The journal focuses on aerospace, civil, infrastructure and mechanical engineering applications.
Original contributions based on analytical, computational and experimental methods are solicited in three main areas: monitoring, control, and smart materials and structures, covering subjects such as system identification, health monitoring, health diagnostics, multi-functional materials, signal processing, sensor technology, passive, active and semi active control schemes and implementations, shape memory alloys, piezoelectrics and mechatronics.
Also of interest are actuator design, dynamic systems, dynamic stability, artificial intelligence tools, data acquisition, wireless communications, measurements, MEMS/NEMS sensors for local damage detection, optical fibre sensors for health monitoring, remote control of monitoring systems, sensor-logger combinations for mobile applications, corrosion sensors, scour indicators and experimental techniques.