广义第一通道渗滤中时间常数的 Lipschitz-continuity

IF 1.1 2区 数学 Q3 STATISTICS & PROBABILITY
Van Hao Can , Shuta Nakajima , Van Quyet Nguyen
{"title":"广义第一通道渗滤中时间常数的 Lipschitz-continuity","authors":"Van Hao Can ,&nbsp;Shuta Nakajima ,&nbsp;Van Quyet Nguyen","doi":"10.1016/j.spa.2024.104402","DOIUrl":null,"url":null,"abstract":"<div><p>In this article, we consider a generalized First-passage percolation model, where each edge in <span><math><msup><mrow><mi>Z</mi></mrow><mrow><mi>d</mi></mrow></msup></math></span> is independently assigned an infinite weight with probability <span><math><mrow><mn>1</mn><mo>−</mo><mi>p</mi></mrow></math></span>, and a random finite weight otherwise. The existence and positivity of the time constant have been established in Cerf and Théret (2016). Recently, using sophisticated multi-scale renormalizations, Cerf and Dembin (2022) proved that the time constant of chemical distance in super-critical percolation is Lipschitz continuous. In this work, we propose a different approach leveraging lattice animal theory and a simple one-step renormalization with the aid of Russo’s formula, to show the Lipschitz continuity of the time constant in generalized First-passage percolation.</p></div>","PeriodicalId":51160,"journal":{"name":"Stochastic Processes and their Applications","volume":"175 ","pages":"Article 104402"},"PeriodicalIF":1.1000,"publicationDate":"2024-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Lipschitz-continuity of time constant in generalized First-passage percolation\",\"authors\":\"Van Hao Can ,&nbsp;Shuta Nakajima ,&nbsp;Van Quyet Nguyen\",\"doi\":\"10.1016/j.spa.2024.104402\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this article, we consider a generalized First-passage percolation model, where each edge in <span><math><msup><mrow><mi>Z</mi></mrow><mrow><mi>d</mi></mrow></msup></math></span> is independently assigned an infinite weight with probability <span><math><mrow><mn>1</mn><mo>−</mo><mi>p</mi></mrow></math></span>, and a random finite weight otherwise. The existence and positivity of the time constant have been established in Cerf and Théret (2016). Recently, using sophisticated multi-scale renormalizations, Cerf and Dembin (2022) proved that the time constant of chemical distance in super-critical percolation is Lipschitz continuous. In this work, we propose a different approach leveraging lattice animal theory and a simple one-step renormalization with the aid of Russo’s formula, to show the Lipschitz continuity of the time constant in generalized First-passage percolation.</p></div>\",\"PeriodicalId\":51160,\"journal\":{\"name\":\"Stochastic Processes and their Applications\",\"volume\":\"175 \",\"pages\":\"Article 104402\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2024-06-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Stochastic Processes and their Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S030441492400108X\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Stochastic Processes and their Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S030441492400108X","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们考虑一种广义的第一通道渗滤模型,其中 Zd 中的每条边都以 1-p 的概率被独立赋予无限权重,否则就是随机的有限权重。时间常数的存在性和正向性已在 Cerf 和 Théret (2016) 中确定。最近,Cerf 和 Dembin(2022 年)利用复杂的多尺度重正化证明,超临界渗流中化学距离的时间常数是 Lipschitz 连续的。在这项工作中,我们提出了一种不同的方法,即利用晶格动物理论和借助鲁索公式的简单一步重正化,来证明广义第一通道渗滤中时间常数的利普希兹连续性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Lipschitz-continuity of time constant in generalized First-passage percolation

In this article, we consider a generalized First-passage percolation model, where each edge in Zd is independently assigned an infinite weight with probability 1p, and a random finite weight otherwise. The existence and positivity of the time constant have been established in Cerf and Théret (2016). Recently, using sophisticated multi-scale renormalizations, Cerf and Dembin (2022) proved that the time constant of chemical distance in super-critical percolation is Lipschitz continuous. In this work, we propose a different approach leveraging lattice animal theory and a simple one-step renormalization with the aid of Russo’s formula, to show the Lipschitz continuity of the time constant in generalized First-passage percolation.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Stochastic Processes and their Applications
Stochastic Processes and their Applications 数学-统计学与概率论
CiteScore
2.90
自引率
7.10%
发文量
180
审稿时长
23.6 weeks
期刊介绍: Stochastic Processes and their Applications publishes papers on the theory and applications of stochastic processes. It is concerned with concepts and techniques, and is oriented towards a broad spectrum of mathematical, scientific and engineering interests. Characterization, structural properties, inference and control of stochastic processes are covered. The journal is exacting and scholarly in its standards. Every effort is made to promote innovation, vitality, and communication between disciplines. All papers are refereed.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信