归一化流量网络和通用信息辅助 PR 动态分析

Chen Li, Min Xu, Siming He, Zhiyu Mao, Tong Liu
{"title":"归一化流量网络和通用信息辅助 PR 动态分析","authors":"Chen Li,&nbsp;Min Xu,&nbsp;Siming He,&nbsp;Zhiyu Mao,&nbsp;Tong Liu","doi":"10.1016/j.iswa.2024.200392","DOIUrl":null,"url":null,"abstract":"<div><p>This paper introduces a novel approach utilizing normalized flow networks (NFNs) for dynamic personal risk (PR) analysis, specifically focusing on the assessment of two-way data rates at network nodes. NFNs, a sophisticated paradigm in data processing and modeling derived from machine learning principles, serve as the foundational framework for our analysis. Leveraging NFNs, we develop a generalized method that integrates information transmission techniques into PR dynamics, enabling a comprehensive examination of communication efficacy within network structures. Our study entails the formulation of dynamic models tailored to capture the evolving nature of PR interactions, facilitating the evaluation of data rates exchanged between network nodes. Through extensive simulations and empirical validation, we demonstrate the effectiveness of our approach in elucidating the intricate dynamics of PR campaigns and quantifying the impact on the network performance. The findings underscore the significance of leveraging NFNs for dynamic PR analysis, offering valuable insights into optimizing communication strategies and enhancing network efficiency in diverse domains.</p></div>","PeriodicalId":100684,"journal":{"name":"Intelligent Systems with Applications","volume":"23 ","pages":"Article 200392"},"PeriodicalIF":0.0000,"publicationDate":"2024-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S266730532400067X/pdfft?md5=482c880254c6f41b754b76e2e0cc296e&pid=1-s2.0-S266730532400067X-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Normalized flow networks and generalized information aided PR dynamic analysis\",\"authors\":\"Chen Li,&nbsp;Min Xu,&nbsp;Siming He,&nbsp;Zhiyu Mao,&nbsp;Tong Liu\",\"doi\":\"10.1016/j.iswa.2024.200392\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This paper introduces a novel approach utilizing normalized flow networks (NFNs) for dynamic personal risk (PR) analysis, specifically focusing on the assessment of two-way data rates at network nodes. NFNs, a sophisticated paradigm in data processing and modeling derived from machine learning principles, serve as the foundational framework for our analysis. Leveraging NFNs, we develop a generalized method that integrates information transmission techniques into PR dynamics, enabling a comprehensive examination of communication efficacy within network structures. Our study entails the formulation of dynamic models tailored to capture the evolving nature of PR interactions, facilitating the evaluation of data rates exchanged between network nodes. Through extensive simulations and empirical validation, we demonstrate the effectiveness of our approach in elucidating the intricate dynamics of PR campaigns and quantifying the impact on the network performance. The findings underscore the significance of leveraging NFNs for dynamic PR analysis, offering valuable insights into optimizing communication strategies and enhancing network efficiency in diverse domains.</p></div>\",\"PeriodicalId\":100684,\"journal\":{\"name\":\"Intelligent Systems with Applications\",\"volume\":\"23 \",\"pages\":\"Article 200392\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S266730532400067X/pdfft?md5=482c880254c6f41b754b76e2e0cc296e&pid=1-s2.0-S266730532400067X-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Intelligent Systems with Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S266730532400067X\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Intelligent Systems with Applications","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S266730532400067X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文介绍了一种利用归一化流量网络(NFN)进行动态个人风险(PR)分析的新方法,尤其侧重于评估网络节点的双向数据传输速率。归一化流量网络是一种源自机器学习原理的数据处理和建模范例,是我们分析的基础框架。利用 NFN,我们开发了一种通用方法,将信息传输技术整合到 PR 动态中,从而能够全面检查网络结构中的通信功效。我们的研究需要建立动态模型,以捕捉公关互动的演变本质,从而促进对网络节点间数据交换率的评估。通过大量的模拟和经验验证,我们证明了我们的方法在阐明公关活动的复杂动态和量化对网络性能的影响方面的有效性。这些发现强调了利用 NFN 进行动态公关分析的重要性,为优化通信策略和提高不同领域的网络效率提供了宝贵的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Normalized flow networks and generalized information aided PR dynamic analysis

This paper introduces a novel approach utilizing normalized flow networks (NFNs) for dynamic personal risk (PR) analysis, specifically focusing on the assessment of two-way data rates at network nodes. NFNs, a sophisticated paradigm in data processing and modeling derived from machine learning principles, serve as the foundational framework for our analysis. Leveraging NFNs, we develop a generalized method that integrates information transmission techniques into PR dynamics, enabling a comprehensive examination of communication efficacy within network structures. Our study entails the formulation of dynamic models tailored to capture the evolving nature of PR interactions, facilitating the evaluation of data rates exchanged between network nodes. Through extensive simulations and empirical validation, we demonstrate the effectiveness of our approach in elucidating the intricate dynamics of PR campaigns and quantifying the impact on the network performance. The findings underscore the significance of leveraging NFNs for dynamic PR analysis, offering valuable insights into optimizing communication strategies and enhancing network efficiency in diverse domains.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.60
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信