可数超均质锦标赛副本的 Posets

IF 0.6 2区 数学 Q2 LOGIC
Miloš S. Kurilić , Stevo Todorčević
{"title":"可数超均质锦标赛副本的 Posets","authors":"Miloš S. Kurilić ,&nbsp;Stevo Todorčević","doi":"10.1016/j.apal.2024.103486","DOIUrl":null,"url":null,"abstract":"<div><p>The <em>poset of copies</em> of a relational structure <span><math><mi>X</mi></math></span> is the partial order <span><math><mi>P</mi><mo>(</mo><mi>X</mi><mo>)</mo><mo>:</mo><mo>=</mo><mo>〈</mo><mo>{</mo><mi>Y</mi><mo>⊂</mo><mi>X</mi><mo>:</mo><mi>Y</mi><mo>≅</mo><mi>X</mi><mo>}</mo><mo>,</mo><mo>⊂</mo><mo>〉</mo></math></span> and each similarity of such posets (e.g. isomorphism, forcing equivalence = isomorphism of Boolean completions, <span><math><msub><mrow><mi>B</mi></mrow><mrow><mi>X</mi></mrow></msub><mo>:</mo><mo>=</mo><mrow><mi>ro</mi></mrow><mspace></mspace><mrow><mi>sq</mi></mrow><mspace></mspace><mi>P</mi><mo>(</mo><mi>X</mi><mo>)</mo></math></span>) determines a classification of structures. Here we consider the structures from Lachlan's list of countable ultrahomogeneous tournaments: <span><math><mi>Q</mi></math></span> (the rational line), <span><math><mi>S</mi><mo>(</mo><mn>2</mn><mo>)</mo></math></span> (the circular tournament), and <span><math><msup><mrow><mi>T</mi></mrow><mrow><mo>∞</mo></mrow></msup></math></span> (the countable homogeneous universal tournament); as well as the ultrahomogeneous digraphs <span><math><mi>S</mi><mo>(</mo><mn>3</mn><mo>)</mo></math></span>, <span><math><mi>Q</mi><mo>[</mo><msub><mrow><mi>I</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>]</mo></math></span>, <span><math><mi>S</mi><mo>(</mo><mn>2</mn><mo>)</mo><mo>[</mo><msub><mrow><mi>I</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>]</mo></math></span> and <span><math><msup><mrow><mi>T</mi></mrow><mrow><mo>∞</mo></mrow></msup><mo>[</mo><msub><mrow><mi>I</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>]</mo></math></span> from Cherlin's list.</p><p>If <span><math><msub><mrow><mi>G</mi></mrow><mrow><mi>Rado</mi></mrow></msub></math></span> (resp. <span><math><msub><mrow><mi>Q</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span>) denotes the countable homogeneous universal graph (resp. <em>n</em>-labeled linear order), it turns out that <span><math><mi>P</mi><mo>(</mo><msup><mrow><mi>T</mi></mrow><mrow><mo>∞</mo></mrow></msup><mo>)</mo><mo>≅</mo><mi>P</mi><mo>(</mo><msub><mrow><mi>G</mi></mrow><mrow><mi>Rado</mi></mrow></msub><mo>)</mo></math></span> and that <span><math><mi>P</mi><mo>(</mo><msub><mrow><mi>Q</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>)</mo></math></span> densely embeds in <span><math><mi>P</mi><mo>(</mo><mi>S</mi><mo>(</mo><mi>n</mi><mo>)</mo><mo>)</mo></math></span>, for <span><math><mi>n</mi><mo>∈</mo><mo>{</mo><mn>2</mn><mo>,</mo><mn>3</mn><mo>}</mo></math></span>.</p><p>Consequently, <span><math><msub><mrow><mi>B</mi></mrow><mrow><mi>X</mi></mrow></msub><mo>≅</mo><mrow><mi>ro</mi></mrow><mspace></mspace><mo>(</mo><mi>S</mi><mo>⁎</mo><mi>π</mi><mo>)</mo></math></span>, where <span><math><mi>S</mi></math></span> is the poset of perfect subsets of <span><math><mi>R</mi></math></span> and <em>π</em> an <span><math><mi>S</mi></math></span>-name such that <span><math><msub><mrow><mn>1</mn></mrow><mrow><mi>S</mi></mrow></msub><mo>⊩</mo><mtext>“</mtext><mi>π</mi></math></span> is a separative, atomless and <em>σ</em>-closed forcing” (thus <span><math><msub><mrow><mn>1</mn></mrow><mrow><mi>S</mi></mrow></msub><mo>⊩</mo><mtext>“</mtext><mi>π</mi><msub><mrow><mo>≡</mo></mrow><mrow><mi>f</mi><mi>o</mi><mi>r</mi><mi>c</mi></mrow></msub><msup><mrow><mo>(</mo><mi>P</mi><mo>(</mo><mi>ω</mi><mo>)</mo><mo>/</mo><mrow><mi>Fin</mi></mrow><mo>)</mo></mrow><mrow><mo>+</mo></mrow></msup></math></span>”, under CH), whenever <span><math><mi>X</mi></math></span> is a countable structure equimorphic with <span><math><mi>Q</mi></math></span>, <span><math><msub><mrow><mi>Q</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span>, <span><math><mi>S</mi><mo>(</mo><mn>2</mn><mo>)</mo></math></span>, <span><math><mi>S</mi><mo>(</mo><mn>3</mn><mo>)</mo></math></span>, <span><math><mi>Q</mi><mo>[</mo><msub><mrow><mi>I</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>]</mo></math></span> or <span><math><mi>S</mi><mo>(</mo><mn>2</mn><mo>)</mo><mo>[</mo><msub><mrow><mi>I</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>]</mo></math></span>.</p><p>Also, <span><math><msub><mrow><mi>B</mi></mrow><mrow><mi>X</mi></mrow></msub><mo>≅</mo><mrow><mi>ro</mi></mrow><mspace></mspace><mo>(</mo><mi>S</mi><mo>⁎</mo><mi>π</mi><mo>)</mo></math></span>, where <span><math><msub><mrow><mn>1</mn></mrow><mrow><mi>S</mi></mrow></msub><mo>⊩</mo><mtext>“</mtext><mi>π</mi></math></span> is an <em>ω</em>-distributive forcing”, whenever <span><math><mi>X</mi></math></span> is a countable graph containing a copy of <span><math><msub><mrow><mi>G</mi></mrow><mrow><mi>Rado</mi></mrow></msub></math></span>, or a countable tournament containing a copy of <span><math><msup><mrow><mi>T</mi></mrow><mrow><mo>∞</mo></mrow></msup></math></span>, or <span><math><mi>X</mi><mo>=</mo><msup><mrow><mi>T</mi></mrow><mrow><mo>∞</mo></mrow></msup><mo>[</mo><msub><mrow><mi>I</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>]</mo></math></span>.</p></div>","PeriodicalId":50762,"journal":{"name":"Annals of Pure and Applied Logic","volume":"175 10","pages":"Article 103486"},"PeriodicalIF":0.6000,"publicationDate":"2024-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Posets of copies of countable ultrahomogeneous tournaments\",\"authors\":\"Miloš S. Kurilić ,&nbsp;Stevo Todorčević\",\"doi\":\"10.1016/j.apal.2024.103486\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The <em>poset of copies</em> of a relational structure <span><math><mi>X</mi></math></span> is the partial order <span><math><mi>P</mi><mo>(</mo><mi>X</mi><mo>)</mo><mo>:</mo><mo>=</mo><mo>〈</mo><mo>{</mo><mi>Y</mi><mo>⊂</mo><mi>X</mi><mo>:</mo><mi>Y</mi><mo>≅</mo><mi>X</mi><mo>}</mo><mo>,</mo><mo>⊂</mo><mo>〉</mo></math></span> and each similarity of such posets (e.g. isomorphism, forcing equivalence = isomorphism of Boolean completions, <span><math><msub><mrow><mi>B</mi></mrow><mrow><mi>X</mi></mrow></msub><mo>:</mo><mo>=</mo><mrow><mi>ro</mi></mrow><mspace></mspace><mrow><mi>sq</mi></mrow><mspace></mspace><mi>P</mi><mo>(</mo><mi>X</mi><mo>)</mo></math></span>) determines a classification of structures. Here we consider the structures from Lachlan's list of countable ultrahomogeneous tournaments: <span><math><mi>Q</mi></math></span> (the rational line), <span><math><mi>S</mi><mo>(</mo><mn>2</mn><mo>)</mo></math></span> (the circular tournament), and <span><math><msup><mrow><mi>T</mi></mrow><mrow><mo>∞</mo></mrow></msup></math></span> (the countable homogeneous universal tournament); as well as the ultrahomogeneous digraphs <span><math><mi>S</mi><mo>(</mo><mn>3</mn><mo>)</mo></math></span>, <span><math><mi>Q</mi><mo>[</mo><msub><mrow><mi>I</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>]</mo></math></span>, <span><math><mi>S</mi><mo>(</mo><mn>2</mn><mo>)</mo><mo>[</mo><msub><mrow><mi>I</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>]</mo></math></span> and <span><math><msup><mrow><mi>T</mi></mrow><mrow><mo>∞</mo></mrow></msup><mo>[</mo><msub><mrow><mi>I</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>]</mo></math></span> from Cherlin's list.</p><p>If <span><math><msub><mrow><mi>G</mi></mrow><mrow><mi>Rado</mi></mrow></msub></math></span> (resp. <span><math><msub><mrow><mi>Q</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span>) denotes the countable homogeneous universal graph (resp. <em>n</em>-labeled linear order), it turns out that <span><math><mi>P</mi><mo>(</mo><msup><mrow><mi>T</mi></mrow><mrow><mo>∞</mo></mrow></msup><mo>)</mo><mo>≅</mo><mi>P</mi><mo>(</mo><msub><mrow><mi>G</mi></mrow><mrow><mi>Rado</mi></mrow></msub><mo>)</mo></math></span> and that <span><math><mi>P</mi><mo>(</mo><msub><mrow><mi>Q</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>)</mo></math></span> densely embeds in <span><math><mi>P</mi><mo>(</mo><mi>S</mi><mo>(</mo><mi>n</mi><mo>)</mo><mo>)</mo></math></span>, for <span><math><mi>n</mi><mo>∈</mo><mo>{</mo><mn>2</mn><mo>,</mo><mn>3</mn><mo>}</mo></math></span>.</p><p>Consequently, <span><math><msub><mrow><mi>B</mi></mrow><mrow><mi>X</mi></mrow></msub><mo>≅</mo><mrow><mi>ro</mi></mrow><mspace></mspace><mo>(</mo><mi>S</mi><mo>⁎</mo><mi>π</mi><mo>)</mo></math></span>, where <span><math><mi>S</mi></math></span> is the poset of perfect subsets of <span><math><mi>R</mi></math></span> and <em>π</em> an <span><math><mi>S</mi></math></span>-name such that <span><math><msub><mrow><mn>1</mn></mrow><mrow><mi>S</mi></mrow></msub><mo>⊩</mo><mtext>“</mtext><mi>π</mi></math></span> is a separative, atomless and <em>σ</em>-closed forcing” (thus <span><math><msub><mrow><mn>1</mn></mrow><mrow><mi>S</mi></mrow></msub><mo>⊩</mo><mtext>“</mtext><mi>π</mi><msub><mrow><mo>≡</mo></mrow><mrow><mi>f</mi><mi>o</mi><mi>r</mi><mi>c</mi></mrow></msub><msup><mrow><mo>(</mo><mi>P</mi><mo>(</mo><mi>ω</mi><mo>)</mo><mo>/</mo><mrow><mi>Fin</mi></mrow><mo>)</mo></mrow><mrow><mo>+</mo></mrow></msup></math></span>”, under CH), whenever <span><math><mi>X</mi></math></span> is a countable structure equimorphic with <span><math><mi>Q</mi></math></span>, <span><math><msub><mrow><mi>Q</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span>, <span><math><mi>S</mi><mo>(</mo><mn>2</mn><mo>)</mo></math></span>, <span><math><mi>S</mi><mo>(</mo><mn>3</mn><mo>)</mo></math></span>, <span><math><mi>Q</mi><mo>[</mo><msub><mrow><mi>I</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>]</mo></math></span> or <span><math><mi>S</mi><mo>(</mo><mn>2</mn><mo>)</mo><mo>[</mo><msub><mrow><mi>I</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>]</mo></math></span>.</p><p>Also, <span><math><msub><mrow><mi>B</mi></mrow><mrow><mi>X</mi></mrow></msub><mo>≅</mo><mrow><mi>ro</mi></mrow><mspace></mspace><mo>(</mo><mi>S</mi><mo>⁎</mo><mi>π</mi><mo>)</mo></math></span>, where <span><math><msub><mrow><mn>1</mn></mrow><mrow><mi>S</mi></mrow></msub><mo>⊩</mo><mtext>“</mtext><mi>π</mi></math></span> is an <em>ω</em>-distributive forcing”, whenever <span><math><mi>X</mi></math></span> is a countable graph containing a copy of <span><math><msub><mrow><mi>G</mi></mrow><mrow><mi>Rado</mi></mrow></msub></math></span>, or a countable tournament containing a copy of <span><math><msup><mrow><mi>T</mi></mrow><mrow><mo>∞</mo></mrow></msup></math></span>, or <span><math><mi>X</mi><mo>=</mo><msup><mrow><mi>T</mi></mrow><mrow><mo>∞</mo></mrow></msup><mo>[</mo><msub><mrow><mi>I</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>]</mo></math></span>.</p></div>\",\"PeriodicalId\":50762,\"journal\":{\"name\":\"Annals of Pure and Applied Logic\",\"volume\":\"175 10\",\"pages\":\"Article 103486\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2024-06-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of Pure and Applied Logic\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0168007224000903\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"LOGIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Pure and Applied Logic","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0168007224000903","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"LOGIC","Score":null,"Total":0}
引用次数: 0

摘要

关系结构 X 副本的正集是偏序 P(X):=〈{Y⊂X:Y≅X},⊂〉,这种正集的每一个相似性(例如同构、强制等价 = 布尔完成的同构,BX:=rosqP(X))决定了结构的一个分类。在此,我们考虑拉克兰的可数超同调锦标赛列表中的结构:Q(有理线)、S(2)(循环锦标赛)和 T∞(可数同质通用锦标赛);以及谢林列表中的超同质数图 S(3)、Q[In]、S(2)[In]和 T∞[In]。如果 GRado(或 Qn)表示可数同素万能图(或 n 标记线性阶),那么对于 n∈{2,3},P(T∞)≅P(GRado)和 P(Qn)密集嵌入 P(S(n))。因此,BX≅ro(S⁎π),其中 S 是 R 的完全子集的正集,π 是一个 S 名,使得 1S⊩"π 是一个分离式、只要 X 是与 Q、Qn、S(2)、S(3)、Q[In] 或 S(2)[In]等价的可数结构,CH 下的 1S⊩"π≡forc(P(ω)/Fin)+"(因此 1S⊩"π≡forc(P(ω)/Fin)+")。另外,BX≅ro(S⁎π),其中 1S⊩"π是ω-分布强迫",只要 X 是包含 GRado 副本的可数图,或包含 T∞ 副本的可数锦标赛,或 X=T∞[In]。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Posets of copies of countable ultrahomogeneous tournaments

The poset of copies of a relational structure X is the partial order P(X):={YX:YX}, and each similarity of such posets (e.g. isomorphism, forcing equivalence = isomorphism of Boolean completions, BX:=rosqP(X)) determines a classification of structures. Here we consider the structures from Lachlan's list of countable ultrahomogeneous tournaments: Q (the rational line), S(2) (the circular tournament), and T (the countable homogeneous universal tournament); as well as the ultrahomogeneous digraphs S(3), Q[In], S(2)[In] and T[In] from Cherlin's list.

If GRado (resp. Qn) denotes the countable homogeneous universal graph (resp. n-labeled linear order), it turns out that P(T)P(GRado) and that P(Qn) densely embeds in P(S(n)), for n{2,3}.

Consequently, BXro(Sπ), where S is the poset of perfect subsets of R and π an S-name such that 1Sπ is a separative, atomless and σ-closed forcing” (thus 1Sπforc(P(ω)/Fin)+”, under CH), whenever X is a countable structure equimorphic with Q, Qn, S(2), S(3), Q[In] or S(2)[In].

Also, BXro(Sπ), where 1Sπ is an ω-distributive forcing”, whenever X is a countable graph containing a copy of GRado, or a countable tournament containing a copy of T, or X=T[In].

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.40
自引率
12.50%
发文量
78
审稿时长
200 days
期刊介绍: The journal Annals of Pure and Applied Logic publishes high quality papers in all areas of mathematical logic as well as applications of logic in mathematics, in theoretical computer science and in other related disciplines. All submissions to the journal should be mathematically correct, well written (preferably in English)and contain relevant new results that are of significant interest to a substantial number of logicians. The journal also considers submissions that are somewhat too long to be published by other journals while being too short to form a separate memoir provided that they are of particular outstanding quality and broad interest. In addition, Annals of Pure and Applied Logic occasionally publishes special issues of selected papers from well-chosen conferences in pure and applied logic.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信