洛德-舒尔曼热压电混合时间积分方案的稳定性

IF 1.4 Q2 MATHEMATICS, APPLIED
Vitalii Stelmashchuk, Heorhiy Shynkarenko
{"title":"洛德-舒尔曼热压电混合时间积分方案的稳定性","authors":"Vitalii Stelmashchuk,&nbsp;Heorhiy Shynkarenko","doi":"10.1016/j.rinam.2024.100467","DOIUrl":null,"url":null,"abstract":"<div><p>Based on the existing initial boundary value and variational problems of Lord–Shulman thermopiezoelectricity a transient analysis of the behavior of piezoelectric materials is performed numerically. For space discretization of the variational problem the finite element method is used and for time discretization a hybrid time integration scheme is constructed on the basis of Newmark scheme for hyperbolic equation and generalized trapezoidal rule for parabolic equations. The unconditional stability of the developed time integration scheme is proved for some specific values of the scheme parameters by making use of energy balance law for the obtained time-discretized variational problem. Finally, the applicability of the constructed numerical scheme is demonstrated by the results of the numerical experiment which are compared with the ones available in literature.</p></div>","PeriodicalId":36918,"journal":{"name":"Results in Applied Mathematics","volume":"23 ","pages":"Article 100467"},"PeriodicalIF":1.4000,"publicationDate":"2024-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2590037424000372/pdfft?md5=368885c86fb8d11597e64117f2a0148c&pid=1-s2.0-S2590037424000372-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Stability of hybrid time integration scheme for Lord–Shulman thermopiezoelectricity\",\"authors\":\"Vitalii Stelmashchuk,&nbsp;Heorhiy Shynkarenko\",\"doi\":\"10.1016/j.rinam.2024.100467\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Based on the existing initial boundary value and variational problems of Lord–Shulman thermopiezoelectricity a transient analysis of the behavior of piezoelectric materials is performed numerically. For space discretization of the variational problem the finite element method is used and for time discretization a hybrid time integration scheme is constructed on the basis of Newmark scheme for hyperbolic equation and generalized trapezoidal rule for parabolic equations. The unconditional stability of the developed time integration scheme is proved for some specific values of the scheme parameters by making use of energy balance law for the obtained time-discretized variational problem. Finally, the applicability of the constructed numerical scheme is demonstrated by the results of the numerical experiment which are compared with the ones available in literature.</p></div>\",\"PeriodicalId\":36918,\"journal\":{\"name\":\"Results in Applied Mathematics\",\"volume\":\"23 \",\"pages\":\"Article 100467\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2024-06-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2590037424000372/pdfft?md5=368885c86fb8d11597e64117f2a0148c&pid=1-s2.0-S2590037424000372-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Results in Applied Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2590037424000372\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Results in Applied Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590037424000372","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

根据 Lord-Shulman 热压电现有的初始边界值和变分问题,对压电材料的行为进行了瞬态数值分析。对于变分问题的空间离散化,采用了有限元方法;对于时间离散化,则在双曲方程的纽马克方案和抛物方程的广义梯形法则基础上,构建了混合时间积分方案。通过利用能量平衡定律来处理所获得的时间离散化变分问题,证明了所开发的时间积分方案在某些特定的方案参数值下的无条件稳定性。最后,通过与文献中的数值实验结果进行比较,证明了所构建的数值方案的适用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Stability of hybrid time integration scheme for Lord–Shulman thermopiezoelectricity

Based on the existing initial boundary value and variational problems of Lord–Shulman thermopiezoelectricity a transient analysis of the behavior of piezoelectric materials is performed numerically. For space discretization of the variational problem the finite element method is used and for time discretization a hybrid time integration scheme is constructed on the basis of Newmark scheme for hyperbolic equation and generalized trapezoidal rule for parabolic equations. The unconditional stability of the developed time integration scheme is proved for some specific values of the scheme parameters by making use of energy balance law for the obtained time-discretized variational problem. Finally, the applicability of the constructed numerical scheme is demonstrated by the results of the numerical experiment which are compared with the ones available in literature.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Results in Applied Mathematics
Results in Applied Mathematics Mathematics-Applied Mathematics
CiteScore
3.20
自引率
10.00%
发文量
50
审稿时长
23 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信