K. Ji , M. Schnedler , Q. Lan , J.-F. Carlin , R. Butté , N. Grandjean , R.E. Dunin-Borkowski , Ph. Ebert
{"title":"调制掺杂 n 型氮化镓电子全息图中相位对比巨幅增强的起源","authors":"K. Ji , M. Schnedler , Q. Lan , J.-F. Carlin , R. Butté , N. Grandjean , R.E. Dunin-Borkowski , Ph. Ebert","doi":"10.1016/j.ultramic.2024.114006","DOIUrl":null,"url":null,"abstract":"<div><p>The electron optical phase contrast probed by electron holography at <span><math><mi>n</mi></math></span>-<span><math><msup><mrow><mi>n</mi></mrow><mrow><mo>+</mo></mrow></msup></math></span> GaN doping steps is found to exhibit a giant enhancement, in sharp contrast to the always smaller than expected phase contrast reported for <span><math><mi>p</mi></math></span>-<span><math><mi>n</mi></math></span> junctions. We unravel the physical origin of the giant enhancement by combining off-axis electron holography data with self-consistent electrostatic potential calculations. The predominant contribution to the phase contrast is shown to arise from the doping dependent screening length of the surface Fermi-level pinning, which is induced by FIB-implanted carbon point defects below the outer amorphous shell. The contribution of the built-in potential is negligible for modulation doping and only relevant for large built-in potentials at e.g. <span><math><mi>p</mi></math></span>-<span><math><mi>n</mi></math></span> junctions. This work provides a quantitative approach to so-called dead layers at TEM lamellas.</p></div>","PeriodicalId":23439,"journal":{"name":"Ultramicroscopy","volume":"264 ","pages":"Article 114006"},"PeriodicalIF":2.1000,"publicationDate":"2024-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0304399124000858/pdfft?md5=03c404a6f50a5b309404ae6f59a44c1b&pid=1-s2.0-S0304399124000858-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Origin of giant enhancement of phase contrast in electron holography of modulation-doped n-type GaN\",\"authors\":\"K. Ji , M. Schnedler , Q. Lan , J.-F. Carlin , R. Butté , N. Grandjean , R.E. Dunin-Borkowski , Ph. Ebert\",\"doi\":\"10.1016/j.ultramic.2024.114006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The electron optical phase contrast probed by electron holography at <span><math><mi>n</mi></math></span>-<span><math><msup><mrow><mi>n</mi></mrow><mrow><mo>+</mo></mrow></msup></math></span> GaN doping steps is found to exhibit a giant enhancement, in sharp contrast to the always smaller than expected phase contrast reported for <span><math><mi>p</mi></math></span>-<span><math><mi>n</mi></math></span> junctions. We unravel the physical origin of the giant enhancement by combining off-axis electron holography data with self-consistent electrostatic potential calculations. The predominant contribution to the phase contrast is shown to arise from the doping dependent screening length of the surface Fermi-level pinning, which is induced by FIB-implanted carbon point defects below the outer amorphous shell. The contribution of the built-in potential is negligible for modulation doping and only relevant for large built-in potentials at e.g. <span><math><mi>p</mi></math></span>-<span><math><mi>n</mi></math></span> junctions. This work provides a quantitative approach to so-called dead layers at TEM lamellas.</p></div>\",\"PeriodicalId\":23439,\"journal\":{\"name\":\"Ultramicroscopy\",\"volume\":\"264 \",\"pages\":\"Article 114006\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-06-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0304399124000858/pdfft?md5=03c404a6f50a5b309404ae6f59a44c1b&pid=1-s2.0-S0304399124000858-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ultramicroscopy\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0304399124000858\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MICROSCOPY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ultramicroscopy","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304399124000858","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MICROSCOPY","Score":null,"Total":0}
引用次数: 0
摘要
在 n-n+ GaN 掺杂阶跃中,通过电子全息技术探测到的电子光学相位对比显示出巨大的增强,这与 p-n 结报告的相位对比总是小于预期形成了鲜明对比。我们将离轴电子全息数据与自洽静电势计算相结合,揭示了巨幅增强的物理根源。结果表明,对相位对比的主要贡献来自与掺杂相关的表面费米级针销的屏蔽长度,它是由外层非晶壳下面的 FIB 植入碳点缺陷引起的。对于调制掺杂来说,内置电势的贡献可以忽略不计,只有在 p-n 结等处的大内置电势才与之相关。这项工作为 TEM 薄片上的所谓死层提供了一种定量方法。
Origin of giant enhancement of phase contrast in electron holography of modulation-doped n-type GaN
The electron optical phase contrast probed by electron holography at - GaN doping steps is found to exhibit a giant enhancement, in sharp contrast to the always smaller than expected phase contrast reported for - junctions. We unravel the physical origin of the giant enhancement by combining off-axis electron holography data with self-consistent electrostatic potential calculations. The predominant contribution to the phase contrast is shown to arise from the doping dependent screening length of the surface Fermi-level pinning, which is induced by FIB-implanted carbon point defects below the outer amorphous shell. The contribution of the built-in potential is negligible for modulation doping and only relevant for large built-in potentials at e.g. - junctions. This work provides a quantitative approach to so-called dead layers at TEM lamellas.
期刊介绍:
Ultramicroscopy is an established journal that provides a forum for the publication of original research papers, invited reviews and rapid communications. The scope of Ultramicroscopy is to describe advances in instrumentation, methods and theory related to all modes of microscopical imaging, diffraction and spectroscopy in the life and physical sciences.