血红素口袋调节蛋白质构象和四聚体球蛋白耦合传感器的二聚体环化酶活性

IF 4.3 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Jacob R. Potter , Shannon Rivera , Paul G. Young , Dayna C. Patterson , Kevin E. Namitz , Neela Yennawar , James R. Kincaid , Yilin Liu , Emily E. Weinert
{"title":"血红素口袋调节蛋白质构象和四聚体球蛋白耦合传感器的二聚体环化酶活性","authors":"Jacob R. Potter ,&nbsp;Shannon Rivera ,&nbsp;Paul G. Young ,&nbsp;Dayna C. Patterson ,&nbsp;Kevin E. Namitz ,&nbsp;Neela Yennawar ,&nbsp;James R. Kincaid ,&nbsp;Yilin Liu ,&nbsp;Emily E. Weinert","doi":"10.1016/j.jinorgbio.2024.112638","DOIUrl":null,"url":null,"abstract":"<div><p>Bacteria use the second messenger cyclic dimeric guanosine monophosphate (<em>c</em>-di-GMP) to control biofilm formation and other key phenotypes in response to environmental signals. Changes in oxygen levels can alter <em>c</em>-di-GMP signaling through a family of proteins termed globin coupled sensors (GCS) that contain diguanylate cyclase domains. Previous studies have found that GCS diguanylate cyclase activity is controlled by ligand binding to the heme within the globin domain, with oxygen binding resulting in the greatest increase in catalytic activity. Herein, we present evidence that heme-edge residues control O<sub>2</sub>-dependent signaling in <em>Pcc</em>GCS, a GCS protein from <em>Pectobacterium carotovorum</em>, by modulating heme distortion. Using enzyme kinetics, resonance Raman spectroscopy, small angle X-ray scattering, and multi-wavelength analytical ultracentrifugation, we have developed an integrated model of the full-length <em>Pcc</em>GCS tetramer and have identified conformational changes associated with ligand binding, heme conformation, and cyclase activity. Taken together, these studies provide new insights into the mechanism by which O<sub>2</sub> binding modulates activity of diguanylate cyclase-containing GCS proteins.</p></div>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Heme pocket modulates protein conformation and diguanylate cyclase activity of a tetrameric globin coupled sensor\",\"authors\":\"Jacob R. Potter ,&nbsp;Shannon Rivera ,&nbsp;Paul G. Young ,&nbsp;Dayna C. Patterson ,&nbsp;Kevin E. Namitz ,&nbsp;Neela Yennawar ,&nbsp;James R. Kincaid ,&nbsp;Yilin Liu ,&nbsp;Emily E. Weinert\",\"doi\":\"10.1016/j.jinorgbio.2024.112638\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Bacteria use the second messenger cyclic dimeric guanosine monophosphate (<em>c</em>-di-GMP) to control biofilm formation and other key phenotypes in response to environmental signals. Changes in oxygen levels can alter <em>c</em>-di-GMP signaling through a family of proteins termed globin coupled sensors (GCS) that contain diguanylate cyclase domains. Previous studies have found that GCS diguanylate cyclase activity is controlled by ligand binding to the heme within the globin domain, with oxygen binding resulting in the greatest increase in catalytic activity. Herein, we present evidence that heme-edge residues control O<sub>2</sub>-dependent signaling in <em>Pcc</em>GCS, a GCS protein from <em>Pectobacterium carotovorum</em>, by modulating heme distortion. Using enzyme kinetics, resonance Raman spectroscopy, small angle X-ray scattering, and multi-wavelength analytical ultracentrifugation, we have developed an integrated model of the full-length <em>Pcc</em>GCS tetramer and have identified conformational changes associated with ligand binding, heme conformation, and cyclase activity. Taken together, these studies provide new insights into the mechanism by which O<sub>2</sub> binding modulates activity of diguanylate cyclase-containing GCS proteins.</p></div>\",\"PeriodicalId\":3,\"journal\":{\"name\":\"ACS Applied Electronic Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-06-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Electronic Materials\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0162013424001624\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0162013424001624","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

细菌利用第二信使环状二聚鸟苷单磷酸(c-di-GMP)来控制生物膜的形成和其他关键表型,以响应环境信号。氧含量的变化可通过一个被称为球蛋白耦合传感器(GCS)的蛋白质家族改变 c-di-GMP 信号传导,该蛋白质家族含有二聚鸟苷酸环化酶结构域。以前的研究发现,GCS 的二聚体环化酶活性受控于配体与球蛋白结构域内的血红素的结合,与氧结合会导致催化活性的最大提高。在本文中,我们提出的证据表明,血红素边缘残基通过调节血红素变形来控制 PccGCS(一种来自胡萝卜果杆菌的 GCS 蛋白)中依赖氧气的信号传导。利用酶动力学、共振拉曼光谱、小角 X 射线散射和多波长分析超速离心法,我们建立了全长 PccGCS 四聚体的综合模型,并确定了与配体结合、血红素构象和环化酶活性相关的构象变化。总之,这些研究为了解氧气结合调节含二鸟苷酸环化酶的 GCS 蛋白活性的机制提供了新的视角。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Heme pocket modulates protein conformation and diguanylate cyclase activity of a tetrameric globin coupled sensor

Heme pocket modulates protein conformation and diguanylate cyclase activity of a tetrameric globin coupled sensor

Bacteria use the second messenger cyclic dimeric guanosine monophosphate (c-di-GMP) to control biofilm formation and other key phenotypes in response to environmental signals. Changes in oxygen levels can alter c-di-GMP signaling through a family of proteins termed globin coupled sensors (GCS) that contain diguanylate cyclase domains. Previous studies have found that GCS diguanylate cyclase activity is controlled by ligand binding to the heme within the globin domain, with oxygen binding resulting in the greatest increase in catalytic activity. Herein, we present evidence that heme-edge residues control O2-dependent signaling in PccGCS, a GCS protein from Pectobacterium carotovorum, by modulating heme distortion. Using enzyme kinetics, resonance Raman spectroscopy, small angle X-ray scattering, and multi-wavelength analytical ultracentrifugation, we have developed an integrated model of the full-length PccGCS tetramer and have identified conformational changes associated with ligand binding, heme conformation, and cyclase activity. Taken together, these studies provide new insights into the mechanism by which O2 binding modulates activity of diguanylate cyclase-containing GCS proteins.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信