用于工业流程故障检测的自动编码器架构比较

IF 3 Q2 ENGINEERING, CHEMICAL
Deris Eduardo Spina , Luiz Felipe de O. Campos , Wallthynay F. de Arruda , Afrânio Melo , Marcelo F. de S. Alves , Gildeir Lima Rabello , Thiago K. Anzai , José Carlos Pinto
{"title":"用于工业流程故障检测的自动编码器架构比较","authors":"Deris Eduardo Spina ,&nbsp;Luiz Felipe de O. Campos ,&nbsp;Wallthynay F. de Arruda ,&nbsp;Afrânio Melo ,&nbsp;Marcelo F. de S. Alves ,&nbsp;Gildeir Lima Rabello ,&nbsp;Thiago K. Anzai ,&nbsp;José Carlos Pinto","doi":"10.1016/j.dche.2024.100162","DOIUrl":null,"url":null,"abstract":"<div><p>Fault detection constitutes a fundamental task for predictive maintenance, requiring mathematical models that can be conveniently provided by data-driven techniques. Autoencoders are a particular type of unsupervised Artificial Neural Networks that can be suitable for fault detection applications. Diverse architectures might be used for autoencoders, resulting in different fault detection performances, which are usually compared by means of Fault Detection Rates for a fixed threshold of the False Alarm Rate, limiting the conclusions to particular cases. To improve the comparability, the present work uses the area under the receiver operating characteristic curve to compare autoencoder architectures for a range of false alarm rates using the Tennessee Eastman Process benchmark. Performances obtained for shallow and deep autoencoders were compared with those of the denoising and variational autoencoders for undercomplete and sparse structures. Overall, the results indicate better performances for sparse structures, especially for the variational autoencoder and the deep denoising autoencoder, with area under the curve of 98.35%.</p></div>","PeriodicalId":72815,"journal":{"name":"Digital Chemical Engineering","volume":"12 ","pages":"Article 100162"},"PeriodicalIF":3.0000,"publicationDate":"2024-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2772508124000243/pdfft?md5=c55239f87adb594358ee7dd0b16c8e9d&pid=1-s2.0-S2772508124000243-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Comparison of autoencoder architectures for fault detection in industrial processes\",\"authors\":\"Deris Eduardo Spina ,&nbsp;Luiz Felipe de O. Campos ,&nbsp;Wallthynay F. de Arruda ,&nbsp;Afrânio Melo ,&nbsp;Marcelo F. de S. Alves ,&nbsp;Gildeir Lima Rabello ,&nbsp;Thiago K. Anzai ,&nbsp;José Carlos Pinto\",\"doi\":\"10.1016/j.dche.2024.100162\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Fault detection constitutes a fundamental task for predictive maintenance, requiring mathematical models that can be conveniently provided by data-driven techniques. Autoencoders are a particular type of unsupervised Artificial Neural Networks that can be suitable for fault detection applications. Diverse architectures might be used for autoencoders, resulting in different fault detection performances, which are usually compared by means of Fault Detection Rates for a fixed threshold of the False Alarm Rate, limiting the conclusions to particular cases. To improve the comparability, the present work uses the area under the receiver operating characteristic curve to compare autoencoder architectures for a range of false alarm rates using the Tennessee Eastman Process benchmark. Performances obtained for shallow and deep autoencoders were compared with those of the denoising and variational autoencoders for undercomplete and sparse structures. Overall, the results indicate better performances for sparse structures, especially for the variational autoencoder and the deep denoising autoencoder, with area under the curve of 98.35%.</p></div>\",\"PeriodicalId\":72815,\"journal\":{\"name\":\"Digital Chemical Engineering\",\"volume\":\"12 \",\"pages\":\"Article 100162\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-05-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2772508124000243/pdfft?md5=c55239f87adb594358ee7dd0b16c8e9d&pid=1-s2.0-S2772508124000243-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Digital Chemical Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2772508124000243\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Digital Chemical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772508124000243","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

摘要

故障检测是预测性维护的一项基本任务,需要通过数据驱动技术方便地提供数学模型。自动编码器是一种特殊的无监督人工神经网络,适用于故障检测应用。自动编码器可能采用不同的架构,从而产生不同的故障检测性能,这些性能通常通过固定误报率阈值的故障检测率进行比较,从而将结论限制在特定情况下。为了提高可比性,本研究使用接收器工作特性曲线下的面积,以田纳西州伊士曼过程基准为基础,比较一系列误报率下的自动编码器架构。将浅层和深层自动编码器的性能与不完整和稀疏结构的去噪和变异自动编码器的性能进行了比较。总体而言,结果表明稀疏结构的性能更好,尤其是变异自动编码器和深度去噪自动编码器,其曲线下面积为 98.35%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Comparison of autoencoder architectures for fault detection in industrial processes

Fault detection constitutes a fundamental task for predictive maintenance, requiring mathematical models that can be conveniently provided by data-driven techniques. Autoencoders are a particular type of unsupervised Artificial Neural Networks that can be suitable for fault detection applications. Diverse architectures might be used for autoencoders, resulting in different fault detection performances, which are usually compared by means of Fault Detection Rates for a fixed threshold of the False Alarm Rate, limiting the conclusions to particular cases. To improve the comparability, the present work uses the area under the receiver operating characteristic curve to compare autoencoder architectures for a range of false alarm rates using the Tennessee Eastman Process benchmark. Performances obtained for shallow and deep autoencoders were compared with those of the denoising and variational autoencoders for undercomplete and sparse structures. Overall, the results indicate better performances for sparse structures, especially for the variational autoencoder and the deep denoising autoencoder, with area under the curve of 98.35%.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.10
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信