通过数学建模、选择和层次推理,确定 IFNα 治疗骨髓增殖性肿瘤的最小剂量。

Gurvan Hermange, William Vainchenker, Isabelle Plo, Paul-Henry Cournède
{"title":"通过数学建模、选择和层次推理,确定 IFNα 治疗骨髓增殖性肿瘤的最小剂量。","authors":"Gurvan Hermange, William Vainchenker, Isabelle Plo, Paul-Henry Cournède","doi":"10.1093/imammb/dqae006","DOIUrl":null,"url":null,"abstract":"<p><p>Myeloproliferative neoplasms (MPN) are blood cancers that appear after acquiring a driver mutation in a hematopoietic stem cell. These hematological malignancies result in the overproduction of mature blood cells and, if not treated, induce a risk of cardiovascular events and thrombosis. Pegylated IFN$\\alpha $ is commonly used to treat MPN, but no clear guidelines exist concerning the dose prescribed to patients. We applied a model selection procedure and ran a hierarchical Bayesian inference method to decipher how dose variations impact the response to the therapy. We inferred that IFN$\\alpha $ acts on mutated stem cells by inducing their differentiation into progenitor cells; the higher the dose, the higher the effect. We found that the treatment can induce long-term remission when a sufficient (patient-dependent) dose is reached. We determined this minimal dose for individuals in a cohort of patients and estimated the most suitable starting dose to give to a new patient to increase the chances of being cured.</p>","PeriodicalId":94130,"journal":{"name":"Mathematical medicine and biology : a journal of the IMA","volume":" ","pages":"110-134"},"PeriodicalIF":0.0000,"publicationDate":"2024-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mathematical modelling, selection and hierarchical inference to determine the minimal dose in IFNα therapy against myeloproliferative neoplasms.\",\"authors\":\"Gurvan Hermange, William Vainchenker, Isabelle Plo, Paul-Henry Cournède\",\"doi\":\"10.1093/imammb/dqae006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Myeloproliferative neoplasms (MPN) are blood cancers that appear after acquiring a driver mutation in a hematopoietic stem cell. These hematological malignancies result in the overproduction of mature blood cells and, if not treated, induce a risk of cardiovascular events and thrombosis. Pegylated IFN$\\\\alpha $ is commonly used to treat MPN, but no clear guidelines exist concerning the dose prescribed to patients. We applied a model selection procedure and ran a hierarchical Bayesian inference method to decipher how dose variations impact the response to the therapy. We inferred that IFN$\\\\alpha $ acts on mutated stem cells by inducing their differentiation into progenitor cells; the higher the dose, the higher the effect. We found that the treatment can induce long-term remission when a sufficient (patient-dependent) dose is reached. We determined this minimal dose for individuals in a cohort of patients and estimated the most suitable starting dose to give to a new patient to increase the chances of being cured.</p>\",\"PeriodicalId\":94130,\"journal\":{\"name\":\"Mathematical medicine and biology : a journal of the IMA\",\"volume\":\" \",\"pages\":\"110-134\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematical medicine and biology : a journal of the IMA\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/imammb/dqae006\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical medicine and biology : a journal of the IMA","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/imammb/dqae006","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

骨髓增生性肿瘤(MPN)是造血干细胞发生驱动突变后出现的血癌。这些血液恶性肿瘤会导致成熟血细胞过度生成,如果不加以治疗,会诱发心血管事件和血栓形成的风险。聚乙二醇 IFNα 通常用于治疗 MPN,但对于患者的用药剂量并没有明确的指导原则。我们采用了模型选择程序和分层贝叶斯推断法,以解读剂量变化如何影响治疗反应。我们推断,IFNα通过诱导突变干细胞分化为祖细胞,从而对突变干细胞产生作用;剂量越大,效果越明显。我们发现,当达到足够剂量(取决于患者)时,治疗可诱导长期缓解。我们确定了一组患者的最低剂量,并估算出最适合新患者的起始剂量,以增加治愈的机会。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Mathematical modelling, selection and hierarchical inference to determine the minimal dose in IFNα therapy against myeloproliferative neoplasms.

Myeloproliferative neoplasms (MPN) are blood cancers that appear after acquiring a driver mutation in a hematopoietic stem cell. These hematological malignancies result in the overproduction of mature blood cells and, if not treated, induce a risk of cardiovascular events and thrombosis. Pegylated IFN$\alpha $ is commonly used to treat MPN, but no clear guidelines exist concerning the dose prescribed to patients. We applied a model selection procedure and ran a hierarchical Bayesian inference method to decipher how dose variations impact the response to the therapy. We inferred that IFN$\alpha $ acts on mutated stem cells by inducing their differentiation into progenitor cells; the higher the dose, the higher the effect. We found that the treatment can induce long-term remission when a sufficient (patient-dependent) dose is reached. We determined this minimal dose for individuals in a cohort of patients and estimated the most suitable starting dose to give to a new patient to increase the chances of being cured.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信