Sebastian H Decker, Sarah Lemer, Simone Decker, Masato Hirose, Mildred J Johnson, Thomas Schwaha
{"title":"镗孔生命:内石孔虫属 Penetrantia Silén, 1946 年的早期群落形成和生长。","authors":"Sebastian H Decker, Sarah Lemer, Simone Decker, Masato Hirose, Mildred J Johnson, Thomas Schwaha","doi":"10.1186/s40851-024-00234-z","DOIUrl":null,"url":null,"abstract":"<p><p>As in most colonial and sessile marine invertebrates, bryozoan life history is characterized by asexual propagation of zooids for colonial growth and by sexual production of larvae for dispersal. However, comprehensive life histories, particularly in cryptic species such as endolithic (boring) bryozoans, remain poorly understood. The ctenostome family Penetrantiidae is widespread from temperate to tropical waters and often found in molluscan shells, offering an opportunity to study the boring lifestyle and its potential impact on bioerosion through growth and settlement experiments. Our research focused on Penetrantia clionoides from Guam in the Pacific Ocean, Penetrantia japonica from Japan, and a Penetrantia species from France in the Atlantic Ocean. We found distinct life histories and reproductive patterns potentially influenced by environmental factors such as temperature and food availability. The tropical P. clionoides displayed higher rates of larval production and growth compared to its temperate counterpart. For instance, the mean stolon extension was 335.2 μm/week in P. clionoides versus 232.1 μm/week in Penetrantia sp. Autozooid development took 13 days in P. clionoides and 31 days in Penetrantia sp. Anatomical features like apertural rims aided in species identification and in understanding larval settlement preferences, suggesting a tendency for philopatric settlement behavior. The bioerosional impact of penetrantiids remains little understood, but we generated first projections of bioerosion rates and a protocol for keeping Penetrantia under laboratory conditions, laying a foundation for further research in this field.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11179354/pdf/","citationCount":"0","resultStr":"{\"title\":\"Boring life: early colony formation and growth in the endolithic bryozoan genus Penetrantia Silén, 1946.\",\"authors\":\"Sebastian H Decker, Sarah Lemer, Simone Decker, Masato Hirose, Mildred J Johnson, Thomas Schwaha\",\"doi\":\"10.1186/s40851-024-00234-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>As in most colonial and sessile marine invertebrates, bryozoan life history is characterized by asexual propagation of zooids for colonial growth and by sexual production of larvae for dispersal. However, comprehensive life histories, particularly in cryptic species such as endolithic (boring) bryozoans, remain poorly understood. The ctenostome family Penetrantiidae is widespread from temperate to tropical waters and often found in molluscan shells, offering an opportunity to study the boring lifestyle and its potential impact on bioerosion through growth and settlement experiments. Our research focused on Penetrantia clionoides from Guam in the Pacific Ocean, Penetrantia japonica from Japan, and a Penetrantia species from France in the Atlantic Ocean. We found distinct life histories and reproductive patterns potentially influenced by environmental factors such as temperature and food availability. The tropical P. clionoides displayed higher rates of larval production and growth compared to its temperate counterpart. For instance, the mean stolon extension was 335.2 μm/week in P. clionoides versus 232.1 μm/week in Penetrantia sp. Autozooid development took 13 days in P. clionoides and 31 days in Penetrantia sp. Anatomical features like apertural rims aided in species identification and in understanding larval settlement preferences, suggesting a tendency for philopatric settlement behavior. The bioerosional impact of penetrantiids remains little understood, but we generated first projections of bioerosion rates and a protocol for keeping Penetrantia under laboratory conditions, laying a foundation for further research in this field.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-06-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11179354/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1186/s40851-024-00234-z\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s40851-024-00234-z","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Boring life: early colony formation and growth in the endolithic bryozoan genus Penetrantia Silén, 1946.
As in most colonial and sessile marine invertebrates, bryozoan life history is characterized by asexual propagation of zooids for colonial growth and by sexual production of larvae for dispersal. However, comprehensive life histories, particularly in cryptic species such as endolithic (boring) bryozoans, remain poorly understood. The ctenostome family Penetrantiidae is widespread from temperate to tropical waters and often found in molluscan shells, offering an opportunity to study the boring lifestyle and its potential impact on bioerosion through growth and settlement experiments. Our research focused on Penetrantia clionoides from Guam in the Pacific Ocean, Penetrantia japonica from Japan, and a Penetrantia species from France in the Atlantic Ocean. We found distinct life histories and reproductive patterns potentially influenced by environmental factors such as temperature and food availability. The tropical P. clionoides displayed higher rates of larval production and growth compared to its temperate counterpart. For instance, the mean stolon extension was 335.2 μm/week in P. clionoides versus 232.1 μm/week in Penetrantia sp. Autozooid development took 13 days in P. clionoides and 31 days in Penetrantia sp. Anatomical features like apertural rims aided in species identification and in understanding larval settlement preferences, suggesting a tendency for philopatric settlement behavior. The bioerosional impact of penetrantiids remains little understood, but we generated first projections of bioerosion rates and a protocol for keeping Penetrantia under laboratory conditions, laying a foundation for further research in this field.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.