Fan Pan, Fan Zhang, Meng-Die Li, YaKun Liang, Wang-Sheng Wang, Kang Sun
{"title":"阿奇霉素通过诱导胎盘中的ER应激扰乱胎儿生长。","authors":"Fan Pan, Fan Zhang, Meng-Die Li, YaKun Liang, Wang-Sheng Wang, Kang Sun","doi":"10.1089/ars.2024.0592","DOIUrl":null,"url":null,"abstract":"<p><p><b><i>Aim:</i></b> Azithromycin (AZM) is widely used to treat mycoplasma infection in pregnancy. However, there is no adequate evaluation of its side effect on the placenta. In this study, using human placental syncytiotrophoblasts and a mouse model, we investigated whether AZM use in pregnancy might adversely affect placental function and pregnancy outcome. <b><i>Results:</i></b> Transcriptomic analysis of AZM-treated human placental syncytiotrophoblasts showed increased expression of endoplasmic reticulum (ER) stress-related genes and decreased expression of genes for hormone production and growth factor processing. Verification studies showed that AZM increased the abundance of ER stress mediators (phosphorylated eIF2α, activating transcription factor 4 [ATF4], and C/EBP Homologous Protein [CHOP]) and decreased the abundance of enzymes involved in progesterone and estradiol synthesis (<i>STS</i>, <i>CYP11A1</i>, and <i>CYP19A1</i>) and insulin-like growth factor binding protein (IGFBP) cleavage (<i>PAPPA</i> and <i>ADAM12</i>) in human placental syncytiotrophoblasts. Inhibition of ER stress blocked AZM-induced decreases in the expression of CYP19A1, CYP11A1, PAPPA, and ADAM12, suggesting that the inhibition of AZM on those genes' expression was secondary to AZM-induced ER stress. Further mechanism study showed that increased ATF4 in ER stress might repressively interact with C/EBPα to suppress the expression of those genes, including <i>CEBPA</i> itself. Mouse studies showed that AZM administration decreased fetal weights along with increased ER stress mediators and decreased levels of insulin-like growth factor, estrogen, and progesterone in the maternal blood, which could be alleviated by inhibition of ER stress. <b><i>Innovation and Conclusion:</i></b> These findings first support the fact that AZM, often used during pregnancy, may affect fetal growth by inhibiting crucial enzymes for estrogen and progesterone synthesis and disrupting crucial proteases for IGFBP cleavage <i>via</i> inducing ER stress in placental syncytiotrophoblasts.</p>","PeriodicalId":8011,"journal":{"name":"Antioxidants & redox signaling","volume":" ","pages":""},"PeriodicalIF":5.9000,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Disturbance of Fetal Growth by Azithromycin Through Induction of ER Stress in the Placenta.\",\"authors\":\"Fan Pan, Fan Zhang, Meng-Die Li, YaKun Liang, Wang-Sheng Wang, Kang Sun\",\"doi\":\"10.1089/ars.2024.0592\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p><b><i>Aim:</i></b> Azithromycin (AZM) is widely used to treat mycoplasma infection in pregnancy. However, there is no adequate evaluation of its side effect on the placenta. In this study, using human placental syncytiotrophoblasts and a mouse model, we investigated whether AZM use in pregnancy might adversely affect placental function and pregnancy outcome. <b><i>Results:</i></b> Transcriptomic analysis of AZM-treated human placental syncytiotrophoblasts showed increased expression of endoplasmic reticulum (ER) stress-related genes and decreased expression of genes for hormone production and growth factor processing. Verification studies showed that AZM increased the abundance of ER stress mediators (phosphorylated eIF2α, activating transcription factor 4 [ATF4], and C/EBP Homologous Protein [CHOP]) and decreased the abundance of enzymes involved in progesterone and estradiol synthesis (<i>STS</i>, <i>CYP11A1</i>, and <i>CYP19A1</i>) and insulin-like growth factor binding protein (IGFBP) cleavage (<i>PAPPA</i> and <i>ADAM12</i>) in human placental syncytiotrophoblasts. Inhibition of ER stress blocked AZM-induced decreases in the expression of CYP19A1, CYP11A1, PAPPA, and ADAM12, suggesting that the inhibition of AZM on those genes' expression was secondary to AZM-induced ER stress. Further mechanism study showed that increased ATF4 in ER stress might repressively interact with C/EBPα to suppress the expression of those genes, including <i>CEBPA</i> itself. Mouse studies showed that AZM administration decreased fetal weights along with increased ER stress mediators and decreased levels of insulin-like growth factor, estrogen, and progesterone in the maternal blood, which could be alleviated by inhibition of ER stress. <b><i>Innovation and Conclusion:</i></b> These findings first support the fact that AZM, often used during pregnancy, may affect fetal growth by inhibiting crucial enzymes for estrogen and progesterone synthesis and disrupting crucial proteases for IGFBP cleavage <i>via</i> inducing ER stress in placental syncytiotrophoblasts.</p>\",\"PeriodicalId\":8011,\"journal\":{\"name\":\"Antioxidants & redox signaling\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":5.9000,\"publicationDate\":\"2024-07-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Antioxidants & redox signaling\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1089/ars.2024.0592\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Antioxidants & redox signaling","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1089/ars.2024.0592","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Disturbance of Fetal Growth by Azithromycin Through Induction of ER Stress in the Placenta.
Aim: Azithromycin (AZM) is widely used to treat mycoplasma infection in pregnancy. However, there is no adequate evaluation of its side effect on the placenta. In this study, using human placental syncytiotrophoblasts and a mouse model, we investigated whether AZM use in pregnancy might adversely affect placental function and pregnancy outcome. Results: Transcriptomic analysis of AZM-treated human placental syncytiotrophoblasts showed increased expression of endoplasmic reticulum (ER) stress-related genes and decreased expression of genes for hormone production and growth factor processing. Verification studies showed that AZM increased the abundance of ER stress mediators (phosphorylated eIF2α, activating transcription factor 4 [ATF4], and C/EBP Homologous Protein [CHOP]) and decreased the abundance of enzymes involved in progesterone and estradiol synthesis (STS, CYP11A1, and CYP19A1) and insulin-like growth factor binding protein (IGFBP) cleavage (PAPPA and ADAM12) in human placental syncytiotrophoblasts. Inhibition of ER stress blocked AZM-induced decreases in the expression of CYP19A1, CYP11A1, PAPPA, and ADAM12, suggesting that the inhibition of AZM on those genes' expression was secondary to AZM-induced ER stress. Further mechanism study showed that increased ATF4 in ER stress might repressively interact with C/EBPα to suppress the expression of those genes, including CEBPA itself. Mouse studies showed that AZM administration decreased fetal weights along with increased ER stress mediators and decreased levels of insulin-like growth factor, estrogen, and progesterone in the maternal blood, which could be alleviated by inhibition of ER stress. Innovation and Conclusion: These findings first support the fact that AZM, often used during pregnancy, may affect fetal growth by inhibiting crucial enzymes for estrogen and progesterone synthesis and disrupting crucial proteases for IGFBP cleavage via inducing ER stress in placental syncytiotrophoblasts.
期刊介绍:
Antioxidants & Redox Signaling (ARS) is the leading peer-reviewed journal dedicated to understanding the vital impact of oxygen and oxidation-reduction (redox) processes on human health and disease. The Journal explores key issues in genetic, pharmaceutical, and nutritional redox-based therapeutics. Cutting-edge research focuses on structural biology, stem cells, regenerative medicine, epigenetics, imaging, clinical outcomes, and preventive and therapeutic nutrition, among other areas.
ARS has expanded to create two unique foci within one journal: ARS Discoveries and ARS Therapeutics. ARS Discoveries (24 issues) publishes the highest-caliber breakthroughs in basic and applied research. ARS Therapeutics (12 issues) is the first publication of its kind that will help enhance the entire field of redox biology by showcasing the potential of redox sciences to change health outcomes.
ARS coverage includes:
-ROS/RNS as messengers
-Gaseous signal transducers
-Hypoxia and tissue oxygenation
-microRNA
-Prokaryotic systems
-Lessons from plant biology