{"title":"2017-2023 年用于治疗癌症的 PARP-1 抑制剂专利。","authors":"Harshwardhan Singh, Ankit Kumar Singh, Adarsh Kumar, Pradeep Kumar","doi":"10.2174/0115748928315021240603073902","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>There are eighteen members of the Poly (ADP-ribose) polymerases (PARPs) family, which oversee various cellular processes such as maintaining the integrity of the genome, regulating transcription, cell cycle progression, initiating the DNA damage response, and apoptosis. PARP1 is an essential member of the PARP family and plays a crucial role in repairing single-strand breaks in eukaryotic cells through a process called BER (base excision repair). It is the most extensively studied and commonly found member of this family.</p><p><strong>Area covered: </strong>This article discusses the advancements in developing PARP inhibitors for human cancers. It covers the discovery of new PARP1 inhibitors with chemical classification that selectively target multiple areas using cancer models in vitro and in vivo and evaluates them critically. The focus is on patents that have been published from 2017 to 2023, except tankyrase inhibitors.</p><p><strong>Expert opinion: </strong>PARP1 inhibitors were developed by various companies and academic groups from the 1990s to enhance the effectiveness of chemo and radiotherapy. However, their progress was hindered due to their severe toxicity when combined with these treatments. Therefore, on finding PARP1 inhibitors that can amplify the ability of chemotherapy agents to kill tumors while causing minimal toxicity, these substances can either be used alone as part of the synthetic lethality approach or in conjunction with radiotherapy or chemotherapy, resulting in a mutually beneficial outcome.</p>","PeriodicalId":94186,"journal":{"name":"Recent patents on anti-cancer drug discovery","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Patents on PARP-1 Inhibitors for the Management of Cancer from 2017-2023.\",\"authors\":\"Harshwardhan Singh, Ankit Kumar Singh, Adarsh Kumar, Pradeep Kumar\",\"doi\":\"10.2174/0115748928315021240603073902\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>There are eighteen members of the Poly (ADP-ribose) polymerases (PARPs) family, which oversee various cellular processes such as maintaining the integrity of the genome, regulating transcription, cell cycle progression, initiating the DNA damage response, and apoptosis. PARP1 is an essential member of the PARP family and plays a crucial role in repairing single-strand breaks in eukaryotic cells through a process called BER (base excision repair). It is the most extensively studied and commonly found member of this family.</p><p><strong>Area covered: </strong>This article discusses the advancements in developing PARP inhibitors for human cancers. It covers the discovery of new PARP1 inhibitors with chemical classification that selectively target multiple areas using cancer models in vitro and in vivo and evaluates them critically. The focus is on patents that have been published from 2017 to 2023, except tankyrase inhibitors.</p><p><strong>Expert opinion: </strong>PARP1 inhibitors were developed by various companies and academic groups from the 1990s to enhance the effectiveness of chemo and radiotherapy. However, their progress was hindered due to their severe toxicity when combined with these treatments. Therefore, on finding PARP1 inhibitors that can amplify the ability of chemotherapy agents to kill tumors while causing minimal toxicity, these substances can either be used alone as part of the synthetic lethality approach or in conjunction with radiotherapy or chemotherapy, resulting in a mutually beneficial outcome.</p>\",\"PeriodicalId\":94186,\"journal\":{\"name\":\"Recent patents on anti-cancer drug discovery\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Recent patents on anti-cancer drug discovery\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2174/0115748928315021240603073902\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Recent patents on anti-cancer drug discovery","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2174/0115748928315021240603073902","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Patents on PARP-1 Inhibitors for the Management of Cancer from 2017-2023.
Background: There are eighteen members of the Poly (ADP-ribose) polymerases (PARPs) family, which oversee various cellular processes such as maintaining the integrity of the genome, regulating transcription, cell cycle progression, initiating the DNA damage response, and apoptosis. PARP1 is an essential member of the PARP family and plays a crucial role in repairing single-strand breaks in eukaryotic cells through a process called BER (base excision repair). It is the most extensively studied and commonly found member of this family.
Area covered: This article discusses the advancements in developing PARP inhibitors for human cancers. It covers the discovery of new PARP1 inhibitors with chemical classification that selectively target multiple areas using cancer models in vitro and in vivo and evaluates them critically. The focus is on patents that have been published from 2017 to 2023, except tankyrase inhibitors.
Expert opinion: PARP1 inhibitors were developed by various companies and academic groups from the 1990s to enhance the effectiveness of chemo and radiotherapy. However, their progress was hindered due to their severe toxicity when combined with these treatments. Therefore, on finding PARP1 inhibitors that can amplify the ability of chemotherapy agents to kill tumors while causing minimal toxicity, these substances can either be used alone as part of the synthetic lethality approach or in conjunction with radiotherapy or chemotherapy, resulting in a mutually beneficial outcome.