SCIMAP:用于多路复用成像数据综合空间分析的 Python 工具包。

Journal of open source software Pub Date : 2024-01-01 Epub Date: 2024-05-29 DOI:10.21105/joss.06604
Ajit J Nirmal, Peter K Sorger
{"title":"SCIMAP:用于多路复用成像数据综合空间分析的 Python 工具包。","authors":"Ajit J Nirmal, Peter K Sorger","doi":"10.21105/joss.06604","DOIUrl":null,"url":null,"abstract":"<p><p>Multiplexed imaging data are revolutionizing our understanding of the composition and organization of tissues and tumors (\"Catching up with Multiplexed Tissue Imaging,\" 2022). A critical aspect of such \"tissue profiling\" is quantifying the spatial relationships among cells at different scales from the interaction of neighboring cells to recurrent communities of cells of multiple types. This often involves statistical analysis of 10<sup>7</sup> or more cells in which up to 100 biomolecules (commonly proteins) have been measured. While software tools currently cater to the analysis of spatial transcriptomics data (Liu et al., 2022), there remains a need for toolkits explicitly tailored to the complexities of multiplexed imaging data including the need to seamlessly integrate image visualization with data analysis and exploration. We introduce SCIMAP, a Python package specifically crafted to address these challenges. With SCIMAP, users can efficiently preprocess, analyze, and visualize large datasets, facilitating the exploration of spatial relationships and their statistical significance. SCIMAP's modular design enables the integration of new algorithms, enhancing its capabilities for spatial analysis.</p>","PeriodicalId":94101,"journal":{"name":"Journal of open source software","volume":"9 97","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11173324/pdf/","citationCount":"0","resultStr":"{\"title\":\"SCIMAP: A Python Toolkit for Integrated Spatial Analysis of Multiplexed Imaging Data.\",\"authors\":\"Ajit J Nirmal, Peter K Sorger\",\"doi\":\"10.21105/joss.06604\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Multiplexed imaging data are revolutionizing our understanding of the composition and organization of tissues and tumors (\\\"Catching up with Multiplexed Tissue Imaging,\\\" 2022). A critical aspect of such \\\"tissue profiling\\\" is quantifying the spatial relationships among cells at different scales from the interaction of neighboring cells to recurrent communities of cells of multiple types. This often involves statistical analysis of 10<sup>7</sup> or more cells in which up to 100 biomolecules (commonly proteins) have been measured. While software tools currently cater to the analysis of spatial transcriptomics data (Liu et al., 2022), there remains a need for toolkits explicitly tailored to the complexities of multiplexed imaging data including the need to seamlessly integrate image visualization with data analysis and exploration. We introduce SCIMAP, a Python package specifically crafted to address these challenges. With SCIMAP, users can efficiently preprocess, analyze, and visualize large datasets, facilitating the exploration of spatial relationships and their statistical significance. SCIMAP's modular design enables the integration of new algorithms, enhancing its capabilities for spatial analysis.</p>\",\"PeriodicalId\":94101,\"journal\":{\"name\":\"Journal of open source software\",\"volume\":\"9 97\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11173324/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of open source software\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.21105/joss.06604\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/5/29 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of open source software","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21105/joss.06604","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/5/29 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

多重成像数据正在彻底改变我们对组织和肿瘤的组成和组织的认识("赶上多重组织成像",2022 年)。这种 "组织剖析 "的一个重要方面是量化不同尺度细胞之间的空间关系,从相邻细胞的相互作用到多种类型细胞的重复群落。这通常需要对 107 个或更多细胞进行统计分析,其中多达 100 种生物大分子(通常为蛋白质)已被测量。虽然目前的软件工具可以满足空间转录组学数据分析的需要(Liu 等人,2022 年),但仍然需要专门针对多路复用成像数据的复杂性量身定制的工具包,包括将图像可视化与数据分析和探索无缝集成的需要。我们介绍了 SCIMAP,这是一个专为应对这些挑战而设计的 Python 软件包。利用 SCIMAP,用户可以高效地预处理、分析和可视化大型数据集,促进对空间关系及其统计意义的探索。SCIMAP 的模块化设计可以集成新的算法,从而增强其空间分析能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
SCIMAP: A Python Toolkit for Integrated Spatial Analysis of Multiplexed Imaging Data.

Multiplexed imaging data are revolutionizing our understanding of the composition and organization of tissues and tumors ("Catching up with Multiplexed Tissue Imaging," 2022). A critical aspect of such "tissue profiling" is quantifying the spatial relationships among cells at different scales from the interaction of neighboring cells to recurrent communities of cells of multiple types. This often involves statistical analysis of 107 or more cells in which up to 100 biomolecules (commonly proteins) have been measured. While software tools currently cater to the analysis of spatial transcriptomics data (Liu et al., 2022), there remains a need for toolkits explicitly tailored to the complexities of multiplexed imaging data including the need to seamlessly integrate image visualization with data analysis and exploration. We introduce SCIMAP, a Python package specifically crafted to address these challenges. With SCIMAP, users can efficiently preprocess, analyze, and visualize large datasets, facilitating the exploration of spatial relationships and their statistical significance. SCIMAP's modular design enables the integration of new algorithms, enhancing its capabilities for spatial analysis.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
审稿时长
3 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信