多色免疫荧光测定法区分细胞内和体外利什曼病寄生虫

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Arani Datta, Umaru Barrie, Dawn M Wetzel
{"title":"多色免疫荧光测定法区分细胞内和体外利什曼病寄生虫","authors":"Arani Datta, Umaru Barrie, Dawn M Wetzel","doi":"10.21769/BioProtoc.5009","DOIUrl":null,"url":null,"abstract":"<p><p>Leishmaniasis, a neglected tropical disease, is caused by the intracellular protozoan parasite <i>Leishmania</i>. Upon its transmission through a sandfly bite, <i>Leishmania</i> binds and enters host phagocytic cells, ultimately resulting in a cutaneous or visceral form of the disease. The limited therapeutics available for leishmaniasis, in combination with this parasite's techniques to evade the host immune system, call for exploring various methods to target this infection. To this end, our laboratory has been characterizing how <i>Leishmania</i> is internalized by phagocytic cells through the activation of multiple host cell signaling pathways. This protocol, which we use routinely for our experiments, delineates how to infect mammalian macrophages with either promastigote or amastigote forms of the <i>Leishmania</i> parasite. Subsequently, the number of intracellular parasites, external parasites, and macrophages can be quantified using immunofluorescence microscopy and semi-automated analysis protocols. Studying the pathways that underlie <i>Leishmania</i> uptake by phagocytes will not only improve our understanding of these host-pathogen interactions but may also provide a foundation for discovering additional treatments for leishmaniasis. Key features • This protocol visualizes and quantifies multiple intracellular forms of <i>Leishmania</i>. • It offers flexibility at various points for researchers to introduce modifications according to their study needs.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11166538/pdf/","citationCount":"0","resultStr":"{\"title\":\"A Multi-Color Immunofluorescence Assay to Distinguish Intracellular From External <i>Leishmania</i> Parasites.\",\"authors\":\"Arani Datta, Umaru Barrie, Dawn M Wetzel\",\"doi\":\"10.21769/BioProtoc.5009\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Leishmaniasis, a neglected tropical disease, is caused by the intracellular protozoan parasite <i>Leishmania</i>. Upon its transmission through a sandfly bite, <i>Leishmania</i> binds and enters host phagocytic cells, ultimately resulting in a cutaneous or visceral form of the disease. The limited therapeutics available for leishmaniasis, in combination with this parasite's techniques to evade the host immune system, call for exploring various methods to target this infection. To this end, our laboratory has been characterizing how <i>Leishmania</i> is internalized by phagocytic cells through the activation of multiple host cell signaling pathways. This protocol, which we use routinely for our experiments, delineates how to infect mammalian macrophages with either promastigote or amastigote forms of the <i>Leishmania</i> parasite. Subsequently, the number of intracellular parasites, external parasites, and macrophages can be quantified using immunofluorescence microscopy and semi-automated analysis protocols. Studying the pathways that underlie <i>Leishmania</i> uptake by phagocytes will not only improve our understanding of these host-pathogen interactions but may also provide a foundation for discovering additional treatments for leishmaniasis. Key features • This protocol visualizes and quantifies multiple intracellular forms of <i>Leishmania</i>. • It offers flexibility at various points for researchers to introduce modifications according to their study needs.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-06-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11166538/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.21769/BioProtoc.5009\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21769/BioProtoc.5009","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

利什曼病是一种被忽视的热带疾病,由细胞内原生寄生虫利什曼原虫引起。通过沙蝇叮咬传播后,利什曼原虫会与宿主的吞噬细胞结合并进入宿主的吞噬细胞,最终导致皮肤或内脏形式的疾病。利什曼病的治疗方法有限,再加上这种寄生虫具有躲避宿主免疫系统的技术,因此需要探索针对这种感染的各种方法。为此,我们实验室一直在研究利什曼病如何通过激活多种宿主细胞信号通路被吞噬细胞内化。我们在实验中常规使用的这一方案,描述了如何用原体或非原体形式的利什曼原虫感染哺乳动物巨噬细胞。随后,细胞内寄生虫、体外寄生虫和巨噬细胞的数量可通过免疫荧光显微镜和半自动分析程序进行量化。研究吞噬细胞摄取利什曼原虫的途径不仅能加深我们对宿主与病原体之间相互作用的理解,还能为发现利什曼病的其他治疗方法奠定基础。主要特点 - 本方案可视化和量化利什曼原虫的多种细胞内形式。- 它在各个环节都具有灵活性,研究人员可根据自己的研究需要进行修改。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Multi-Color Immunofluorescence Assay to Distinguish Intracellular From External Leishmania Parasites.

Leishmaniasis, a neglected tropical disease, is caused by the intracellular protozoan parasite Leishmania. Upon its transmission through a sandfly bite, Leishmania binds and enters host phagocytic cells, ultimately resulting in a cutaneous or visceral form of the disease. The limited therapeutics available for leishmaniasis, in combination with this parasite's techniques to evade the host immune system, call for exploring various methods to target this infection. To this end, our laboratory has been characterizing how Leishmania is internalized by phagocytic cells through the activation of multiple host cell signaling pathways. This protocol, which we use routinely for our experiments, delineates how to infect mammalian macrophages with either promastigote or amastigote forms of the Leishmania parasite. Subsequently, the number of intracellular parasites, external parasites, and macrophages can be quantified using immunofluorescence microscopy and semi-automated analysis protocols. Studying the pathways that underlie Leishmania uptake by phagocytes will not only improve our understanding of these host-pathogen interactions but may also provide a foundation for discovering additional treatments for leishmaniasis. Key features • This protocol visualizes and quantifies multiple intracellular forms of Leishmania. • It offers flexibility at various points for researchers to introduce modifications according to their study needs.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信