{"title":"利用单细胞转录组数据和波动约束相关性确定造血过程中的细胞系定向网络","authors":"Tomoshiro Ochiai , Jose C. Nacher","doi":"10.1016/j.biosystems.2024.105248","DOIUrl":null,"url":null,"abstract":"<div><p>Single-cell transcriptome sequencing (scRNA-seq) has revolutionized our understanding of cellular processes by enabling the analysis of expression profiles at an individual cell level. This technology has shown promise in uncovering new cell types, gene functions, cell differentiation, and trajectory inference through the study of various biological processes, such as hematopoiesis. Recent scRNA-seq analysis of mouse bone marrow cells has provided a network model of hematopoietic lineage. However, all data analyses have predicted undirected network maps for the associated cell trajectories. Moreover, the debate regarding the origin of basophil cells still persists. In this work, we apply the Volatility Constrained (VC) correlation method to predict not only the network structure but also the causality or directionality between the cell types present in the hematopoietic process. Our findings suggest a dual origin of basophils, from both granulocyte/macrophage and erythrocyte progenitors, the latter being a trajectory less explored in previous research. The proposed approach and predictions may assist in developing a complete hematopoietic process map, impacting our understanding of hematopoiesis and providing a robust directional network framework for further biomedical research.</p></div>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Determining cellular lineage directed networks in hematopoiesis using single-cell transcriptomic data and volatility-constrained correlation\",\"authors\":\"Tomoshiro Ochiai , Jose C. Nacher\",\"doi\":\"10.1016/j.biosystems.2024.105248\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Single-cell transcriptome sequencing (scRNA-seq) has revolutionized our understanding of cellular processes by enabling the analysis of expression profiles at an individual cell level. This technology has shown promise in uncovering new cell types, gene functions, cell differentiation, and trajectory inference through the study of various biological processes, such as hematopoiesis. Recent scRNA-seq analysis of mouse bone marrow cells has provided a network model of hematopoietic lineage. However, all data analyses have predicted undirected network maps for the associated cell trajectories. Moreover, the debate regarding the origin of basophil cells still persists. In this work, we apply the Volatility Constrained (VC) correlation method to predict not only the network structure but also the causality or directionality between the cell types present in the hematopoietic process. Our findings suggest a dual origin of basophils, from both granulocyte/macrophage and erythrocyte progenitors, the latter being a trajectory less explored in previous research. The proposed approach and predictions may assist in developing a complete hematopoietic process map, impacting our understanding of hematopoiesis and providing a robust directional network framework for further biomedical research.</p></div>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-06-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0303264724001333\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0303264724001333","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
Determining cellular lineage directed networks in hematopoiesis using single-cell transcriptomic data and volatility-constrained correlation
Single-cell transcriptome sequencing (scRNA-seq) has revolutionized our understanding of cellular processes by enabling the analysis of expression profiles at an individual cell level. This technology has shown promise in uncovering new cell types, gene functions, cell differentiation, and trajectory inference through the study of various biological processes, such as hematopoiesis. Recent scRNA-seq analysis of mouse bone marrow cells has provided a network model of hematopoietic lineage. However, all data analyses have predicted undirected network maps for the associated cell trajectories. Moreover, the debate regarding the origin of basophil cells still persists. In this work, we apply the Volatility Constrained (VC) correlation method to predict not only the network structure but also the causality or directionality between the cell types present in the hematopoietic process. Our findings suggest a dual origin of basophils, from both granulocyte/macrophage and erythrocyte progenitors, the latter being a trajectory less explored in previous research. The proposed approach and predictions may assist in developing a complete hematopoietic process map, impacting our understanding of hematopoiesis and providing a robust directional network framework for further biomedical research.