在两种不同气候条件下测试和评估两种堆肥系统效率的多标准方法。

IF 2.1 4区 环境科学与生态学 Q3 ENGINEERING, ENVIRONMENTAL
Majed Ibrahim Al-Sari', A K Haritash
{"title":"在两种不同气候条件下测试和评估两种堆肥系统效率的多标准方法。","authors":"Majed Ibrahim Al-Sari', A K Haritash","doi":"10.1080/10962247.2024.2365707","DOIUrl":null,"url":null,"abstract":"<p><p>The selection of the appropriate composting system, climate conditions, and duration of the composting process are important parameters for municipal solid waste composting. Therefore, this research aimed to design, test, and evaluate two different static composting systems under two different climate regions, Palestine and India, following a multi-criteria approach. A forced-aeration composting system was designed for use in Palestine, and a naturally aerated one was used in India. Three experiments were conducted, two of them in Palestine and one in India. The operational parameters were controlled and monitored during the composting process, while the physio-chemical and biological parameters were tested to evaluate the compost end quality. The results showed that both systems provide good efficiency toward formation of final compost (39-43 days in Palestine, and 31 days in India), and the average materials' volume reduction was almost 60%. The physio-chemical analysis showed that most of the parameters comply with the threshold limits specified by the Palestinian Standards Institution (PSI) and Indian Fertilizer Control Order (FCO) except for minor deviations. Both systems provided a high fertility index (4.3, 4.7, and 4.8), and a high clean index (4.6, 5.0, and 4.7). However, the results of the biological parameters showed that all the experiments met PSI, but none of them met FCO, suggesting that the outer edges of the composting system didn't heat enough to inactivate pathogenic microbes, therefore, developing the system by adding turning option could overcome this shortcoming. It was concluded that the forced aeration system is suitable for Palestine, while the natural aeration system is suitable for India.<i>Implications</i>: Municipal solid waste management is facing technical and financial challenges worldwide due to the increasing generation of solid waste following the population growth. The current improper management of this waste stream through landfilling is adding pressure on the environment as a result of methane emissions and landfill leachate. Therefore, composting of the organic fraction through selection of an appropriate composting system can solve many waste management problems and contribute to environmental sustainability. This research focuses on design, test and evaluate two composting systems in two regions with different climatic conditions, Palestine and India as both are facing waste management problems. The outcome of this research optimized the composting process which can be replicated and scaled up in other countries worldwide with similar climatic conditions.</p>","PeriodicalId":49171,"journal":{"name":"Journal of the Air & Waste Management Association","volume":null,"pages":null},"PeriodicalIF":2.1000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A multi-criteria approach to test and evaluate the efficiency of two composting systems under two different climates.\",\"authors\":\"Majed Ibrahim Al-Sari', A K Haritash\",\"doi\":\"10.1080/10962247.2024.2365707\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The selection of the appropriate composting system, climate conditions, and duration of the composting process are important parameters for municipal solid waste composting. Therefore, this research aimed to design, test, and evaluate two different static composting systems under two different climate regions, Palestine and India, following a multi-criteria approach. A forced-aeration composting system was designed for use in Palestine, and a naturally aerated one was used in India. Three experiments were conducted, two of them in Palestine and one in India. The operational parameters were controlled and monitored during the composting process, while the physio-chemical and biological parameters were tested to evaluate the compost end quality. The results showed that both systems provide good efficiency toward formation of final compost (39-43 days in Palestine, and 31 days in India), and the average materials' volume reduction was almost 60%. The physio-chemical analysis showed that most of the parameters comply with the threshold limits specified by the Palestinian Standards Institution (PSI) and Indian Fertilizer Control Order (FCO) except for minor deviations. Both systems provided a high fertility index (4.3, 4.7, and 4.8), and a high clean index (4.6, 5.0, and 4.7). However, the results of the biological parameters showed that all the experiments met PSI, but none of them met FCO, suggesting that the outer edges of the composting system didn't heat enough to inactivate pathogenic microbes, therefore, developing the system by adding turning option could overcome this shortcoming. It was concluded that the forced aeration system is suitable for Palestine, while the natural aeration system is suitable for India.<i>Implications</i>: Municipal solid waste management is facing technical and financial challenges worldwide due to the increasing generation of solid waste following the population growth. The current improper management of this waste stream through landfilling is adding pressure on the environment as a result of methane emissions and landfill leachate. Therefore, composting of the organic fraction through selection of an appropriate composting system can solve many waste management problems and contribute to environmental sustainability. This research focuses on design, test and evaluate two composting systems in two regions with different climatic conditions, Palestine and India as both are facing waste management problems. The outcome of this research optimized the composting process which can be replicated and scaled up in other countries worldwide with similar climatic conditions.</p>\",\"PeriodicalId\":49171,\"journal\":{\"name\":\"Journal of the Air & Waste Management Association\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the Air & Waste Management Association\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1080/10962247.2024.2365707\",\"RegionNum\":4,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/7/3 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ENVIRONMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Air & Waste Management Association","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1080/10962247.2024.2365707","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/7/3 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0

摘要

影响:随着人口增长,固体废物的产生量不断增加,城市固体废物管理在全球范围内面临着技术和财政挑战。目前,通过填埋方式对这些废物流进行的不当管理因甲烷排放和填埋场沥滤液而增加了对环境的压力。因此,通过选择合适的堆肥系统对有机部分进行堆肥处理,可以解决许多废物管理问题,并有助于环境的可持续发展。本研究的重点是在巴勒斯坦和印度这两个气候条件不同的地区设计、测试和评估两种堆肥系统,因为这两个地区都面临着废物管理问题。研究成果优化了堆肥过程,可在气候条件相似的世界其他国家复制和推广。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A multi-criteria approach to test and evaluate the efficiency of two composting systems under two different climates.

The selection of the appropriate composting system, climate conditions, and duration of the composting process are important parameters for municipal solid waste composting. Therefore, this research aimed to design, test, and evaluate two different static composting systems under two different climate regions, Palestine and India, following a multi-criteria approach. A forced-aeration composting system was designed for use in Palestine, and a naturally aerated one was used in India. Three experiments were conducted, two of them in Palestine and one in India. The operational parameters were controlled and monitored during the composting process, while the physio-chemical and biological parameters were tested to evaluate the compost end quality. The results showed that both systems provide good efficiency toward formation of final compost (39-43 days in Palestine, and 31 days in India), and the average materials' volume reduction was almost 60%. The physio-chemical analysis showed that most of the parameters comply with the threshold limits specified by the Palestinian Standards Institution (PSI) and Indian Fertilizer Control Order (FCO) except for minor deviations. Both systems provided a high fertility index (4.3, 4.7, and 4.8), and a high clean index (4.6, 5.0, and 4.7). However, the results of the biological parameters showed that all the experiments met PSI, but none of them met FCO, suggesting that the outer edges of the composting system didn't heat enough to inactivate pathogenic microbes, therefore, developing the system by adding turning option could overcome this shortcoming. It was concluded that the forced aeration system is suitable for Palestine, while the natural aeration system is suitable for India.Implications: Municipal solid waste management is facing technical and financial challenges worldwide due to the increasing generation of solid waste following the population growth. The current improper management of this waste stream through landfilling is adding pressure on the environment as a result of methane emissions and landfill leachate. Therefore, composting of the organic fraction through selection of an appropriate composting system can solve many waste management problems and contribute to environmental sustainability. This research focuses on design, test and evaluate two composting systems in two regions with different climatic conditions, Palestine and India as both are facing waste management problems. The outcome of this research optimized the composting process which can be replicated and scaled up in other countries worldwide with similar climatic conditions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of the Air & Waste Management Association
Journal of the Air & Waste Management Association ENGINEERING, ENVIRONMENTAL-ENVIRONMENTAL SCIENCES
CiteScore
5.00
自引率
3.70%
发文量
95
审稿时长
3 months
期刊介绍: The Journal of the Air & Waste Management Association (J&AWMA) is one of the oldest continuously published, peer-reviewed, technical environmental journals in the world. First published in 1951 under the name Air Repair, J&AWMA is intended to serve those occupationally involved in air pollution control and waste management through the publication of timely and reliable information.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信