{"title":"钙离子的流入会迅速在细胞伤口处形成不同的附件蛋白空间招募。","authors":"Mitsutoshi Nakamura, Susan M Parkhurst","doi":"10.1093/genetics/iyae101","DOIUrl":null,"url":null,"abstract":"<p><p>To survive daily damage, the formation of actomyosin ring at the wound edge is required to rapidly close cell wounds. Calcium influx is one of the start signals for these cell wound repair events. Here, we find that the rapid recruitment of all 3 Drosophila calcium-responding and phospholipid-binding Annexin proteins (AnxB9, AnxB10, and AnxB11) to distinct regions around the wound is regulated by the quantity of calcium influx rather than their binding to specific phospholipids. The distinct recruitment patterns of these Annexins regulate the subsequent recruitment of RhoGEF2 and RhoGEF3 through actin stabilization to form a robust actomyosin ring. Surprisingly, while the wound does not close in the absence of calcium influx, we find that reduced calcium influx can still initiate repair processes, albeit leading to severe repair phenotypes. Thus, our results suggest that, in addition to initiating repair events, the quantity of calcium influx is important for precise Annexin spatiotemporal protein recruitment to cell wounds and efficient wound repair.</p>","PeriodicalId":48925,"journal":{"name":"Genetics","volume":null,"pages":null},"PeriodicalIF":3.3000,"publicationDate":"2024-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11304956/pdf/","citationCount":"0","resultStr":"{\"title\":\"Calcium influx rapidly establishes distinct spatial recruitments of Annexins to cell wounds.\",\"authors\":\"Mitsutoshi Nakamura, Susan M Parkhurst\",\"doi\":\"10.1093/genetics/iyae101\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>To survive daily damage, the formation of actomyosin ring at the wound edge is required to rapidly close cell wounds. Calcium influx is one of the start signals for these cell wound repair events. Here, we find that the rapid recruitment of all 3 Drosophila calcium-responding and phospholipid-binding Annexin proteins (AnxB9, AnxB10, and AnxB11) to distinct regions around the wound is regulated by the quantity of calcium influx rather than their binding to specific phospholipids. The distinct recruitment patterns of these Annexins regulate the subsequent recruitment of RhoGEF2 and RhoGEF3 through actin stabilization to form a robust actomyosin ring. Surprisingly, while the wound does not close in the absence of calcium influx, we find that reduced calcium influx can still initiate repair processes, albeit leading to severe repair phenotypes. Thus, our results suggest that, in addition to initiating repair events, the quantity of calcium influx is important for precise Annexin spatiotemporal protein recruitment to cell wounds and efficient wound repair.</p>\",\"PeriodicalId\":48925,\"journal\":{\"name\":\"Genetics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2024-08-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11304956/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Genetics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/genetics/iyae101\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"GENETICS & HEREDITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genetics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/genetics/iyae101","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
Calcium influx rapidly establishes distinct spatial recruitments of Annexins to cell wounds.
To survive daily damage, the formation of actomyosin ring at the wound edge is required to rapidly close cell wounds. Calcium influx is one of the start signals for these cell wound repair events. Here, we find that the rapid recruitment of all 3 Drosophila calcium-responding and phospholipid-binding Annexin proteins (AnxB9, AnxB10, and AnxB11) to distinct regions around the wound is regulated by the quantity of calcium influx rather than their binding to specific phospholipids. The distinct recruitment patterns of these Annexins regulate the subsequent recruitment of RhoGEF2 and RhoGEF3 through actin stabilization to form a robust actomyosin ring. Surprisingly, while the wound does not close in the absence of calcium influx, we find that reduced calcium influx can still initiate repair processes, albeit leading to severe repair phenotypes. Thus, our results suggest that, in addition to initiating repair events, the quantity of calcium influx is important for precise Annexin spatiotemporal protein recruitment to cell wounds and efficient wound repair.
期刊介绍:
GENETICS is published by the Genetics Society of America, a scholarly society that seeks to deepen our understanding of the living world by advancing our understanding of genetics. Since 1916, GENETICS has published high-quality, original research presenting novel findings bearing on genetics and genomics. The journal publishes empirical studies of organisms ranging from microbes to humans, as well as theoretical work.
While it has an illustrious history, GENETICS has changed along with the communities it serves: it is not your mentor''s journal.
The editors make decisions quickly – in around 30 days – without sacrificing the excellence and scholarship for which the journal has long been known. GENETICS is a peer reviewed, peer-edited journal, with an international reach and increasing visibility and impact. All editorial decisions are made through collaboration of at least two editors who are practicing scientists.
GENETICS is constantly innovating: expanded types of content include Reviews, Commentary (current issues of interest to geneticists), Perspectives (historical), Primers (to introduce primary literature into the classroom), Toolbox Reviews, plus YeastBook, FlyBook, and WormBook (coming spring 2016). For particularly time-sensitive results, we publish Communications. As part of our mission to serve our communities, we''ve published thematic collections, including Genomic Selection, Multiparental Populations, Mouse Collaborative Cross, and the Genetics of Sex.