Matthew W. Jones, Douglas I. Kelley, Chantelle A. Burton, Francesca Di Giuseppe, Maria Lucia F. Barbosa, Esther Brambleby, Andrew J. Hartley, Anna Lombardi, Guilherme Mataveli, Joe R. McNorton, Fiona R. Spuler, Jakob B. Wessel, John T. Abatzoglou, Liana O. Anderson, Niels Andela, Sally Archibald, Dolors Armenteras, Eleanor Burke, Rachel Carmenta, Emilio Chuvieco, Hamish Clarke, Stefan H. Doerr, Paulo M. Fernandes, Louis Giglio, Douglas S. Hamilton, Stijn Hantson, Sarah Harris, Piyush Jain, Crystal A. Kolden, Tiina Kurvits, Seppe Lampe, Sarah Meier, Stacey New, Mark Parrington, Morgane M. G. Perron, Yuquan Qu, Natasha S. Ribeiro, Bambang H. Saharjo, Jesus San-Miguel-Ayanz, Jacquelyn K. Shuman, Veerachai Tanpipat, Guido R. van der Werf, Sander Veraverbeke, Gavriil Xanthopoulos
{"title":"2023-24 年野火状况","authors":"Matthew W. Jones, Douglas I. Kelley, Chantelle A. Burton, Francesca Di Giuseppe, Maria Lucia F. Barbosa, Esther Brambleby, Andrew J. Hartley, Anna Lombardi, Guilherme Mataveli, Joe R. McNorton, Fiona R. Spuler, Jakob B. Wessel, John T. Abatzoglou, Liana O. Anderson, Niels Andela, Sally Archibald, Dolors Armenteras, Eleanor Burke, Rachel Carmenta, Emilio Chuvieco, Hamish Clarke, Stefan H. Doerr, Paulo M. Fernandes, Louis Giglio, Douglas S. Hamilton, Stijn Hantson, Sarah Harris, Piyush Jain, Crystal A. Kolden, Tiina Kurvits, Seppe Lampe, Sarah Meier, Stacey New, Mark Parrington, Morgane M. G. Perron, Yuquan Qu, Natasha S. Ribeiro, Bambang H. Saharjo, Jesus San-Miguel-Ayanz, Jacquelyn K. Shuman, Veerachai Tanpipat, Guido R. van der Werf, Sander Veraverbeke, Gavriil Xanthopoulos","doi":"10.5194/essd-2024-218","DOIUrl":null,"url":null,"abstract":"<strong>Abstract.</strong> Climate change is increasing the frequency and intensity of wildfires globally, with significant impacts on society and the environment. However, our understanding of the global distribution of extreme fires remains skewed, primarily influenced by media coverage and regional research concentration. This inaugural State of Wildfires report systematically analyses fire activity worldwide, identifying extreme events from the March 2023–February 2024 fire season. We assess the causes, predictability, and attribution of these events to climate change and land use, and forecast future risks under different climate scenarios. During the 2023–24 fire season, 3.9 million km<sup>2</sup> burned globally, slightly below the average of previous seasons, but fire carbon (C) emissions were 16 % above average, totaling 2.4 Pg C. This was driven by record emissions in Canadian boreal forests (over 9 times the average) and dampened by reduced activity in African savannahs. Notable events included record-breaking wildfire extent and emissions in Canada, the largest recorded wildfire in the European Union (Greece), drought-driven fires in western Amazonia and northern parts of South America, and deadly fires in Hawai’i (100 deaths) and Chile (131 deaths). Over 232,000 people were evacuated in Canada alone, highlighting the severity of human impact. Our analyses revealed that multiple drivers were needed to cause areas of extreme fire activity. In Canada and Greece a combination of high fire weather and an abundance of dry fuels increased the probability of fires by 4.5-fold and 1.9–4.1-fold, respectively, whereas fuel load and direct human suppression often modulated areas with anomalous burned area. The fire season in Canada was predictable three months in advance based on the fire weather index, whereas events in Greece and Amazonia had shorter predictability horizons. Formal attribution analyses indicated that the probability of extreme events has increased significantly due to anthropogenic climate change, with a 2.9–3.6-fold increase in likelihood of high fire weather in Canada and a 20.0–28.5-fold increase in Amazonia. By the end of the century, events of similar magnitude are projected to occur 2.22–9.58 times more frequently in Canada under high emission scenarios. Without mitigation, regions like Western Amazonia could see up to a 2.9-fold increase in extreme fire events. For the 2024–25 fire season, seasonal forecasts highlight moderate positive anomalies in fire weather for parts of western Canada and South America, but no clear signal for extreme anomalies is present in the forecast. This report represents our first annual effort to catalogue extreme wildfire events, explain their occurrence, and predict future risks. By consolidating state-of-the-art wildfire science and delivering key insights relevant to policymakers, disaster management services, firefighting agencies, and land managers, we aim to enhance society’s resilience to wildfires and promote advances in preparedness, mitigation, and adaptation.","PeriodicalId":48747,"journal":{"name":"Earth System Science Data","volume":"33 1","pages":""},"PeriodicalIF":11.2000,"publicationDate":"2024-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"State of Wildfires 2023–24\",\"authors\":\"Matthew W. Jones, Douglas I. Kelley, Chantelle A. Burton, Francesca Di Giuseppe, Maria Lucia F. Barbosa, Esther Brambleby, Andrew J. Hartley, Anna Lombardi, Guilherme Mataveli, Joe R. McNorton, Fiona R. Spuler, Jakob B. Wessel, John T. Abatzoglou, Liana O. Anderson, Niels Andela, Sally Archibald, Dolors Armenteras, Eleanor Burke, Rachel Carmenta, Emilio Chuvieco, Hamish Clarke, Stefan H. Doerr, Paulo M. Fernandes, Louis Giglio, Douglas S. Hamilton, Stijn Hantson, Sarah Harris, Piyush Jain, Crystal A. Kolden, Tiina Kurvits, Seppe Lampe, Sarah Meier, Stacey New, Mark Parrington, Morgane M. G. Perron, Yuquan Qu, Natasha S. Ribeiro, Bambang H. Saharjo, Jesus San-Miguel-Ayanz, Jacquelyn K. Shuman, Veerachai Tanpipat, Guido R. van der Werf, Sander Veraverbeke, Gavriil Xanthopoulos\",\"doi\":\"10.5194/essd-2024-218\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<strong>Abstract.</strong> Climate change is increasing the frequency and intensity of wildfires globally, with significant impacts on society and the environment. However, our understanding of the global distribution of extreme fires remains skewed, primarily influenced by media coverage and regional research concentration. This inaugural State of Wildfires report systematically analyses fire activity worldwide, identifying extreme events from the March 2023–February 2024 fire season. We assess the causes, predictability, and attribution of these events to climate change and land use, and forecast future risks under different climate scenarios. During the 2023–24 fire season, 3.9 million km<sup>2</sup> burned globally, slightly below the average of previous seasons, but fire carbon (C) emissions were 16 % above average, totaling 2.4 Pg C. This was driven by record emissions in Canadian boreal forests (over 9 times the average) and dampened by reduced activity in African savannahs. Notable events included record-breaking wildfire extent and emissions in Canada, the largest recorded wildfire in the European Union (Greece), drought-driven fires in western Amazonia and northern parts of South America, and deadly fires in Hawai’i (100 deaths) and Chile (131 deaths). Over 232,000 people were evacuated in Canada alone, highlighting the severity of human impact. Our analyses revealed that multiple drivers were needed to cause areas of extreme fire activity. In Canada and Greece a combination of high fire weather and an abundance of dry fuels increased the probability of fires by 4.5-fold and 1.9–4.1-fold, respectively, whereas fuel load and direct human suppression often modulated areas with anomalous burned area. The fire season in Canada was predictable three months in advance based on the fire weather index, whereas events in Greece and Amazonia had shorter predictability horizons. Formal attribution analyses indicated that the probability of extreme events has increased significantly due to anthropogenic climate change, with a 2.9–3.6-fold increase in likelihood of high fire weather in Canada and a 20.0–28.5-fold increase in Amazonia. By the end of the century, events of similar magnitude are projected to occur 2.22–9.58 times more frequently in Canada under high emission scenarios. Without mitigation, regions like Western Amazonia could see up to a 2.9-fold increase in extreme fire events. For the 2024–25 fire season, seasonal forecasts highlight moderate positive anomalies in fire weather for parts of western Canada and South America, but no clear signal for extreme anomalies is present in the forecast. This report represents our first annual effort to catalogue extreme wildfire events, explain their occurrence, and predict future risks. By consolidating state-of-the-art wildfire science and delivering key insights relevant to policymakers, disaster management services, firefighting agencies, and land managers, we aim to enhance society’s resilience to wildfires and promote advances in preparedness, mitigation, and adaptation.\",\"PeriodicalId\":48747,\"journal\":{\"name\":\"Earth System Science Data\",\"volume\":\"33 1\",\"pages\":\"\"},\"PeriodicalIF\":11.2000,\"publicationDate\":\"2024-06-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Earth System Science Data\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.5194/essd-2024-218\",\"RegionNum\":1,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GEOSCIENCES, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Earth System Science Data","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.5194/essd-2024-218","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
Abstract. Climate change is increasing the frequency and intensity of wildfires globally, with significant impacts on society and the environment. However, our understanding of the global distribution of extreme fires remains skewed, primarily influenced by media coverage and regional research concentration. This inaugural State of Wildfires report systematically analyses fire activity worldwide, identifying extreme events from the March 2023–February 2024 fire season. We assess the causes, predictability, and attribution of these events to climate change and land use, and forecast future risks under different climate scenarios. During the 2023–24 fire season, 3.9 million km2 burned globally, slightly below the average of previous seasons, but fire carbon (C) emissions were 16 % above average, totaling 2.4 Pg C. This was driven by record emissions in Canadian boreal forests (over 9 times the average) and dampened by reduced activity in African savannahs. Notable events included record-breaking wildfire extent and emissions in Canada, the largest recorded wildfire in the European Union (Greece), drought-driven fires in western Amazonia and northern parts of South America, and deadly fires in Hawai’i (100 deaths) and Chile (131 deaths). Over 232,000 people were evacuated in Canada alone, highlighting the severity of human impact. Our analyses revealed that multiple drivers were needed to cause areas of extreme fire activity. In Canada and Greece a combination of high fire weather and an abundance of dry fuels increased the probability of fires by 4.5-fold and 1.9–4.1-fold, respectively, whereas fuel load and direct human suppression often modulated areas with anomalous burned area. The fire season in Canada was predictable three months in advance based on the fire weather index, whereas events in Greece and Amazonia had shorter predictability horizons. Formal attribution analyses indicated that the probability of extreme events has increased significantly due to anthropogenic climate change, with a 2.9–3.6-fold increase in likelihood of high fire weather in Canada and a 20.0–28.5-fold increase in Amazonia. By the end of the century, events of similar magnitude are projected to occur 2.22–9.58 times more frequently in Canada under high emission scenarios. Without mitigation, regions like Western Amazonia could see up to a 2.9-fold increase in extreme fire events. For the 2024–25 fire season, seasonal forecasts highlight moderate positive anomalies in fire weather for parts of western Canada and South America, but no clear signal for extreme anomalies is present in the forecast. This report represents our first annual effort to catalogue extreme wildfire events, explain their occurrence, and predict future risks. By consolidating state-of-the-art wildfire science and delivering key insights relevant to policymakers, disaster management services, firefighting agencies, and land managers, we aim to enhance society’s resilience to wildfires and promote advances in preparedness, mitigation, and adaptation.
Earth System Science DataGEOSCIENCES, MULTIDISCIPLINARYMETEOROLOGY-METEOROLOGY & ATMOSPHERIC SCIENCES
CiteScore
18.00
自引率
5.30%
发文量
231
审稿时长
35 weeks
期刊介绍:
Earth System Science Data (ESSD) is an international, interdisciplinary journal that publishes articles on original research data in order to promote the reuse of high-quality data in the field of Earth system sciences. The journal welcomes submissions of original data or data collections that meet the required quality standards and have the potential to contribute to the goals of the journal. It includes sections dedicated to regular-length articles, brief communications (such as updates to existing data sets), commentaries, review articles, and special issues. ESSD is abstracted and indexed in several databases, including Science Citation Index Expanded, Current Contents/PCE, Scopus, ADS, CLOCKSS, CNKI, DOAJ, EBSCO, Gale/Cengage, GoOA (CAS), and Google Scholar, among others.