分数微分方程的非均匀网格高阶预测器-校正器方法

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Farzaneh Mokhtarnezhadazar
{"title":"分数微分方程的非均匀网格高阶预测器-校正器方法","authors":"Farzaneh Mokhtarnezhadazar","doi":"10.1007/s13540-024-00303-2","DOIUrl":null,"url":null,"abstract":"<p>This article proposes a predictor-corrector scheme for solving the fractional differential equations <span>\\({}_0^C D_t^\\alpha y(t) = f(t,y(t)), \\alpha &gt;0\\)</span> with non-uniform meshes. We reduce the fractional differential equation into the Volterra integral equation. Detailed error analysis and stability analysis are investigated. The convergent order of this method on non-uniform meshes is still 3 though <span>\\({}_0^C D_t^\\alpha y(t)\\)</span> is not smooth at <span>\\(t=0\\)</span>. Numerical examples are carried out to verify the theoretical analysis.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A high order predictor-corrector method with non-uniform meshes for fractional differential equations\",\"authors\":\"Farzaneh Mokhtarnezhadazar\",\"doi\":\"10.1007/s13540-024-00303-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This article proposes a predictor-corrector scheme for solving the fractional differential equations <span>\\\\({}_0^C D_t^\\\\alpha y(t) = f(t,y(t)), \\\\alpha &gt;0\\\\)</span> with non-uniform meshes. We reduce the fractional differential equation into the Volterra integral equation. Detailed error analysis and stability analysis are investigated. The convergent order of this method on non-uniform meshes is still 3 though <span>\\\\({}_0^C D_t^\\\\alpha y(t)\\\\)</span> is not smooth at <span>\\\\(t=0\\\\)</span>. Numerical examples are carried out to verify the theoretical analysis.</p>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-06-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s13540-024-00303-2\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s13540-024-00303-2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种预测器-校正器方案,用于求解非均匀网格的分数微分方程 \({}_0^C D_t^\alpha y(t) = f(t,y(t)), \alpha >0\)。我们将分数微分方程简化为 Volterra 积分方程。研究了详细的误差分析和稳定性分析。虽然 \({}_0^C D_t^\alpha y(t)\) 在 \(t=0\) 时并不平滑,但该方法在非均匀网格上的收敛阶数仍为 3。为了验证理论分析,我们进行了数值示例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A high order predictor-corrector method with non-uniform meshes for fractional differential equations

This article proposes a predictor-corrector scheme for solving the fractional differential equations \({}_0^C D_t^\alpha y(t) = f(t,y(t)), \alpha >0\) with non-uniform meshes. We reduce the fractional differential equation into the Volterra integral equation. Detailed error analysis and stability analysis are investigated. The convergent order of this method on non-uniform meshes is still 3 though \({}_0^C D_t^\alpha y(t)\) is not smooth at \(t=0\). Numerical examples are carried out to verify the theoretical analysis.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信