{"title":"可能的 Lyapunov 函数的分数差分不等式:综述","authors":"Yiheng Wei, Linlin Zhao, Xuan Zhao, Jinde Cao","doi":"10.1007/s13540-024-00298-w","DOIUrl":null,"url":null,"abstract":"<p>This study delves into the origin, evolution, and practical applications of fractional difference inequalities based on recent literature. The review provides an overview of existing inequalities proposed under various definitions. Furthermore, to enhance this potent mathematical tool, a series of new inequalities have been introduced. Additionally, leveraging renowned Lyapunov functions in continuous-time domain, their discrete-time counterparts have been formulated. Moreover, several new potential Lyapunov functions have been identified. This review aims to aid readers in selecting suitable inequalities and Lyapunov functions to analyze the stability of nabla fractional order systems.</p>","PeriodicalId":48928,"journal":{"name":"Fractional Calculus and Applied Analysis","volume":"24 1","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2024-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fractional difference inequalities for possible Lyapunov functions: a review\",\"authors\":\"Yiheng Wei, Linlin Zhao, Xuan Zhao, Jinde Cao\",\"doi\":\"10.1007/s13540-024-00298-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This study delves into the origin, evolution, and practical applications of fractional difference inequalities based on recent literature. The review provides an overview of existing inequalities proposed under various definitions. Furthermore, to enhance this potent mathematical tool, a series of new inequalities have been introduced. Additionally, leveraging renowned Lyapunov functions in continuous-time domain, their discrete-time counterparts have been formulated. Moreover, several new potential Lyapunov functions have been identified. This review aims to aid readers in selecting suitable inequalities and Lyapunov functions to analyze the stability of nabla fractional order systems.</p>\",\"PeriodicalId\":48928,\"journal\":{\"name\":\"Fractional Calculus and Applied Analysis\",\"volume\":\"24 1\",\"pages\":\"\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-06-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fractional Calculus and Applied Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s13540-024-00298-w\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fractional Calculus and Applied Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s13540-024-00298-w","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Fractional difference inequalities for possible Lyapunov functions: a review
This study delves into the origin, evolution, and practical applications of fractional difference inequalities based on recent literature. The review provides an overview of existing inequalities proposed under various definitions. Furthermore, to enhance this potent mathematical tool, a series of new inequalities have been introduced. Additionally, leveraging renowned Lyapunov functions in continuous-time domain, their discrete-time counterparts have been formulated. Moreover, several new potential Lyapunov functions have been identified. This review aims to aid readers in selecting suitable inequalities and Lyapunov functions to analyze the stability of nabla fractional order systems.
期刊介绍:
Fractional Calculus and Applied Analysis (FCAA, abbreviated in the World databases as Fract. Calc. Appl. Anal. or FRACT CALC APPL ANAL) is a specialized international journal for theory and applications of an important branch of Mathematical Analysis (Calculus) where differentiations and integrations can be of arbitrary non-integer order. The high standards of its contents are guaranteed by the prominent members of Editorial Board and the expertise of invited external reviewers, and proven by the recently achieved high values of impact factor (JIF) and impact rang (SJR), launching the journal to top places of the ranking lists of Thomson Reuters and Scopus.