用于稳健腿部运动的 $mathcal {H}_{2}$- 和 $mathcal {H}_\infty$ 最佳模型预测控制器

Abhishek Pandala;Aaron D. Ames;Kaveh Akbari Hamed
{"title":"用于稳健腿部运动的 $mathcal {H}_{2}$- 和 $mathcal {H}_\\infty$ 最佳模型预测控制器","authors":"Abhishek Pandala;Aaron D. Ames;Kaveh Akbari Hamed","doi":"10.1109/OJCSYS.2024.3407999","DOIUrl":null,"url":null,"abstract":"This paper formally develops robust optimal predictive control solutions that can accommodate disturbances and stabilize periodic legged locomotion. To this end, we build upon existing optimization-based control paradigms, particularly quadratic programming (QP)-based model predictive controllers (MPCs). We present conditions under which the closed-loop reduced-order systems (i.e., template models) with MPC have the continuous differentiability property on an open neighborhood of gaits. We then linearize the resulting discrete-time, closed-loop nonlinear template system around the gait to obtain a linear time-varying (LTV) system. This periodic LTV system is further transformed into a linear system with a constant state-transition matrix using discrete-time Floquet transform. The system is then analyzed to accommodate parametric uncertainties and to synthesize robust optimal \n<inline-formula><tex-math>$\\mathcal {H}_{2}$</tex-math></inline-formula>\n and \n<inline-formula><tex-math>$\\mathcal {H}_\\infty$</tex-math></inline-formula>\n feedback controllers via linear matrix inequalities (LMIs). The paper then extends the theoretical results to the single rigid body (SRB) template dynamics and numerically verifies them. The proposed robust optimal predictive controllers are used in a layered control structure, where the optimal reduced-order trajectories are provided to a full-order nonlinear whole-body controller (WBC) for tracking at the low level. The developed layered controllers are numerically and experimentally validated for the robust locomotion of the A1 quadrupedal robot subject to various disturbances and uneven terrains. Our numerical results suggest that the \n<inline-formula><tex-math>$\\mathcal {H}_{2}$</tex-math></inline-formula>\n- and \n<inline-formula><tex-math>$\\mathcal {H}_\\infty$</tex-math></inline-formula>\n-optimal MPC controllers significantly improve the robust stability of the gaits compared to the normal MPC.","PeriodicalId":73299,"journal":{"name":"IEEE open journal of control systems","volume":"3 ","pages":"225-238"},"PeriodicalIF":0.0000,"publicationDate":"2024-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10543084","citationCount":"0","resultStr":"{\"title\":\"$\\\\mathcal {H}_{2}$- and $\\\\mathcal {H}_\\\\infty$-Optimal Model Predictive Controllers for Robust Legged Locomotion\",\"authors\":\"Abhishek Pandala;Aaron D. Ames;Kaveh Akbari Hamed\",\"doi\":\"10.1109/OJCSYS.2024.3407999\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper formally develops robust optimal predictive control solutions that can accommodate disturbances and stabilize periodic legged locomotion. To this end, we build upon existing optimization-based control paradigms, particularly quadratic programming (QP)-based model predictive controllers (MPCs). We present conditions under which the closed-loop reduced-order systems (i.e., template models) with MPC have the continuous differentiability property on an open neighborhood of gaits. We then linearize the resulting discrete-time, closed-loop nonlinear template system around the gait to obtain a linear time-varying (LTV) system. This periodic LTV system is further transformed into a linear system with a constant state-transition matrix using discrete-time Floquet transform. The system is then analyzed to accommodate parametric uncertainties and to synthesize robust optimal \\n<inline-formula><tex-math>$\\\\mathcal {H}_{2}$</tex-math></inline-formula>\\n and \\n<inline-formula><tex-math>$\\\\mathcal {H}_\\\\infty$</tex-math></inline-formula>\\n feedback controllers via linear matrix inequalities (LMIs). The paper then extends the theoretical results to the single rigid body (SRB) template dynamics and numerically verifies them. The proposed robust optimal predictive controllers are used in a layered control structure, where the optimal reduced-order trajectories are provided to a full-order nonlinear whole-body controller (WBC) for tracking at the low level. The developed layered controllers are numerically and experimentally validated for the robust locomotion of the A1 quadrupedal robot subject to various disturbances and uneven terrains. Our numerical results suggest that the \\n<inline-formula><tex-math>$\\\\mathcal {H}_{2}$</tex-math></inline-formula>\\n- and \\n<inline-formula><tex-math>$\\\\mathcal {H}_\\\\infty$</tex-math></inline-formula>\\n-optimal MPC controllers significantly improve the robust stability of the gaits compared to the normal MPC.\",\"PeriodicalId\":73299,\"journal\":{\"name\":\"IEEE open journal of control systems\",\"volume\":\"3 \",\"pages\":\"225-238\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-03-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10543084\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE open journal of control systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10543084/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE open journal of control systems","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10543084/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文正式提出了稳健的最优预测控制解决方案,可适应干扰并稳定周期性的腿部运动。为此,我们借鉴了现有的基于优化的控制范式,特别是基于二次编程(QP)的模型预测控制器(MPC)。我们提出了使用 MPC 的闭环降阶系统(即模板模型)在步态的开放邻域上具有连续可微分特性的条件。然后,我们将所得到的围绕步态的离散时间闭环非线性模板系统线性化,得到一个线性时变(LTV)系统。利用离散时间 Floquet 变换,可将此周期性 LTV 系统进一步转换为具有恒定状态转换矩阵的线性系统。然后分析该系统以适应参数不确定性,并通过线性矩阵不等式(LMI)合成鲁棒的最优 $\mathcal {H}_{2}$ 和 $\mathcal {H}_\infty$ 反馈控制器。然后,本文将理论结果扩展到单刚体(SRB)模板动力学,并对其进行了数值验证。所提出的鲁棒最优预测控制器被用于分层控制结构中,其中最优的降阶轨迹被提供给全阶非线性全身控制器 (WBC),用于低层次的跟踪。针对 A1 四足机器人在各种干扰和不平地形下的鲁棒运动,对所开发的分层控制器进行了数值和实验验证。数值结果表明,与普通 MPC 相比,$\mathcal {H}_{2}$- 和 $\mathcal {H}_\infty$- 最佳 MPC 控制器显著提高了步态的鲁棒稳定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
$\mathcal {H}_{2}$- and $\mathcal {H}_\infty$-Optimal Model Predictive Controllers for Robust Legged Locomotion
This paper formally develops robust optimal predictive control solutions that can accommodate disturbances and stabilize periodic legged locomotion. To this end, we build upon existing optimization-based control paradigms, particularly quadratic programming (QP)-based model predictive controllers (MPCs). We present conditions under which the closed-loop reduced-order systems (i.e., template models) with MPC have the continuous differentiability property on an open neighborhood of gaits. We then linearize the resulting discrete-time, closed-loop nonlinear template system around the gait to obtain a linear time-varying (LTV) system. This periodic LTV system is further transformed into a linear system with a constant state-transition matrix using discrete-time Floquet transform. The system is then analyzed to accommodate parametric uncertainties and to synthesize robust optimal $\mathcal {H}_{2}$ and $\mathcal {H}_\infty$ feedback controllers via linear matrix inequalities (LMIs). The paper then extends the theoretical results to the single rigid body (SRB) template dynamics and numerically verifies them. The proposed robust optimal predictive controllers are used in a layered control structure, where the optimal reduced-order trajectories are provided to a full-order nonlinear whole-body controller (WBC) for tracking at the low level. The developed layered controllers are numerically and experimentally validated for the robust locomotion of the A1 quadrupedal robot subject to various disturbances and uneven terrains. Our numerical results suggest that the $\mathcal {H}_{2}$ - and $\mathcal {H}_\infty$ -optimal MPC controllers significantly improve the robust stability of the gaits compared to the normal MPC.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信