{"title":"具有随机形状指示核的最大卷积过程","authors":"Pavel Krupskii , Raphaël Huser","doi":"10.1016/j.jmva.2024.105340","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we introduce a new class of models for spatial data obtained from max-convolution processes based on indicator kernels with random shape. We show that these models have appealing dependence properties including tail dependence at short distances and independence at long distances. We further consider max-convolutions between such processes and processes with tail independence, in order to separately control the bulk and tail dependence behaviors, and to increase flexibility of the model at longer distances, in particular, to capture intermediate tail dependence. We show how parameters can be estimated using a weighted pairwise likelihood approach, and we conduct an extensive simulation study to show that the proposed inference approach is feasible in relatively high dimensions and it yields accurate parameter estimates in most cases. We apply the proposed methodology to analyze daily temperature maxima measured at 100 monitoring stations in the state of Oklahoma, US. Our results indicate that our proposed model provides a good fit to the data, and that it captures both the bulk and the tail dependence structures accurately.</p></div>","PeriodicalId":16431,"journal":{"name":"Journal of Multivariate Analysis","volume":null,"pages":null},"PeriodicalIF":1.4000,"publicationDate":"2024-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0047259X24000472/pdfft?md5=6e148f4b405bc0c38b2fef0ced10dc6b&pid=1-s2.0-S0047259X24000472-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Max-convolution processes with random shape indicator kernels\",\"authors\":\"Pavel Krupskii , Raphaël Huser\",\"doi\":\"10.1016/j.jmva.2024.105340\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper, we introduce a new class of models for spatial data obtained from max-convolution processes based on indicator kernels with random shape. We show that these models have appealing dependence properties including tail dependence at short distances and independence at long distances. We further consider max-convolutions between such processes and processes with tail independence, in order to separately control the bulk and tail dependence behaviors, and to increase flexibility of the model at longer distances, in particular, to capture intermediate tail dependence. We show how parameters can be estimated using a weighted pairwise likelihood approach, and we conduct an extensive simulation study to show that the proposed inference approach is feasible in relatively high dimensions and it yields accurate parameter estimates in most cases. We apply the proposed methodology to analyze daily temperature maxima measured at 100 monitoring stations in the state of Oklahoma, US. Our results indicate that our proposed model provides a good fit to the data, and that it captures both the bulk and the tail dependence structures accurately.</p></div>\",\"PeriodicalId\":16431,\"journal\":{\"name\":\"Journal of Multivariate Analysis\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2024-06-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0047259X24000472/pdfft?md5=6e148f4b405bc0c38b2fef0ced10dc6b&pid=1-s2.0-S0047259X24000472-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Multivariate Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0047259X24000472\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Multivariate Analysis","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0047259X24000472","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
Max-convolution processes with random shape indicator kernels
In this paper, we introduce a new class of models for spatial data obtained from max-convolution processes based on indicator kernels with random shape. We show that these models have appealing dependence properties including tail dependence at short distances and independence at long distances. We further consider max-convolutions between such processes and processes with tail independence, in order to separately control the bulk and tail dependence behaviors, and to increase flexibility of the model at longer distances, in particular, to capture intermediate tail dependence. We show how parameters can be estimated using a weighted pairwise likelihood approach, and we conduct an extensive simulation study to show that the proposed inference approach is feasible in relatively high dimensions and it yields accurate parameter estimates in most cases. We apply the proposed methodology to analyze daily temperature maxima measured at 100 monitoring stations in the state of Oklahoma, US. Our results indicate that our proposed model provides a good fit to the data, and that it captures both the bulk and the tail dependence structures accurately.
期刊介绍:
Founded in 1971, the Journal of Multivariate Analysis (JMVA) is the central venue for the publication of new, relevant methodology and particularly innovative applications pertaining to the analysis and interpretation of multidimensional data.
The journal welcomes contributions to all aspects of multivariate data analysis and modeling, including cluster analysis, discriminant analysis, factor analysis, and multidimensional continuous or discrete distribution theory. Topics of current interest include, but are not limited to, inferential aspects of
Copula modeling
Functional data analysis
Graphical modeling
High-dimensional data analysis
Image analysis
Multivariate extreme-value theory
Sparse modeling
Spatial statistics.