Maya Zeini, Marcello C Laurenti, Aoife M Egan, Kalpana Muthusamy, Anisha Ramar, Emma Vella, Kent R Bailey, Claudio Cobelli, Chiara Dalla Man, Adrian Vella
{"title":"与糖尿病相关的 TCF7L2 变异对人类胰岛功能的纵向影响。","authors":"Maya Zeini, Marcello C Laurenti, Aoife M Egan, Kalpana Muthusamy, Anisha Ramar, Emma Vella, Kent R Bailey, Claudio Cobelli, Chiara Dalla Man, Adrian Vella","doi":"10.2337/db24-0192","DOIUrl":null,"url":null,"abstract":"<p><p>The T allele at rs7903146 in TCF7L2 increases the rate of conversion from prediabetes to type 2 diabetes. This has been associated with impaired β-cell function and with defective suppression of α-cell secretion by glucose. However, the temporal relationship of these abnormalities is uncertain. To study the longitudinal changes in islet function, we recruited 128 subjects, with 67 homozygous for the diabetes-associated allele (TT) at rs7903146 and 61 homozygous for the protective allele. Subjects were studied on two occasions, 3 years apart, using an oral 75-g glucose challenge. The oral minimal model was used to quantitate β-cell function; the glucagon secretion rate was estimated from deconvolution of glucagon concentrations. Glucose tolerance worsened in subjects with the TT genotype. This was accompanied by impaired postchallenge glucagon suppression but appropriate β-cell responsivity to rising glucose concentrations. These data suggest that α-cell abnormalities associated with the TT genotype (rs7903146) occur early and may precede β-cell dysfunction in people as they develop glucose intolerance and type 2 diabetes.</p><p><strong>Article highlights: </strong></p>","PeriodicalId":93977,"journal":{"name":"Diabetes","volume":" ","pages":"1440-1446"},"PeriodicalIF":0.0000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11333375/pdf/","citationCount":"0","resultStr":"{\"title\":\"The Longitudinal Effect of Diabetes-Associated Variation in TCF7L2 on Islet Function in Humans.\",\"authors\":\"Maya Zeini, Marcello C Laurenti, Aoife M Egan, Kalpana Muthusamy, Anisha Ramar, Emma Vella, Kent R Bailey, Claudio Cobelli, Chiara Dalla Man, Adrian Vella\",\"doi\":\"10.2337/db24-0192\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The T allele at rs7903146 in TCF7L2 increases the rate of conversion from prediabetes to type 2 diabetes. This has been associated with impaired β-cell function and with defective suppression of α-cell secretion by glucose. However, the temporal relationship of these abnormalities is uncertain. To study the longitudinal changes in islet function, we recruited 128 subjects, with 67 homozygous for the diabetes-associated allele (TT) at rs7903146 and 61 homozygous for the protective allele. Subjects were studied on two occasions, 3 years apart, using an oral 75-g glucose challenge. The oral minimal model was used to quantitate β-cell function; the glucagon secretion rate was estimated from deconvolution of glucagon concentrations. Glucose tolerance worsened in subjects with the TT genotype. This was accompanied by impaired postchallenge glucagon suppression but appropriate β-cell responsivity to rising glucose concentrations. These data suggest that α-cell abnormalities associated with the TT genotype (rs7903146) occur early and may precede β-cell dysfunction in people as they develop glucose intolerance and type 2 diabetes.</p><p><strong>Article highlights: </strong></p>\",\"PeriodicalId\":93977,\"journal\":{\"name\":\"Diabetes\",\"volume\":\" \",\"pages\":\"1440-1446\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11333375/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Diabetes\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2337/db24-0192\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Diabetes","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2337/db24-0192","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The Longitudinal Effect of Diabetes-Associated Variation in TCF7L2 on Islet Function in Humans.
The T allele at rs7903146 in TCF7L2 increases the rate of conversion from prediabetes to type 2 diabetes. This has been associated with impaired β-cell function and with defective suppression of α-cell secretion by glucose. However, the temporal relationship of these abnormalities is uncertain. To study the longitudinal changes in islet function, we recruited 128 subjects, with 67 homozygous for the diabetes-associated allele (TT) at rs7903146 and 61 homozygous for the protective allele. Subjects were studied on two occasions, 3 years apart, using an oral 75-g glucose challenge. The oral minimal model was used to quantitate β-cell function; the glucagon secretion rate was estimated from deconvolution of glucagon concentrations. Glucose tolerance worsened in subjects with the TT genotype. This was accompanied by impaired postchallenge glucagon suppression but appropriate β-cell responsivity to rising glucose concentrations. These data suggest that α-cell abnormalities associated with the TT genotype (rs7903146) occur early and may precede β-cell dysfunction in people as they develop glucose intolerance and type 2 diabetes.