{"title":"黄芪皂苷 IV 通过 Mfn2/Pink1/Parkin 轴上调丝裂吞噬作用保护荚膜细胞免受损伤","authors":"Yuan Yuan, Yufan Wu, Minhui He, Xue Jiang","doi":"10.2174/0115665240310818240531080353","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Podocyte injury is the most important pathological hallmark of kidney diseases. Autophagy is a critical factor that involves podocyte injury. Here, we sought to determine whether Astragaloside IV (AS-IV) was able to improve renal function and reverse podocyte injury through the regulation of autophagy.</p><p><strong>Methods: </strong>Using the Adriamycin (ADR) mice model, cultured immortalized mouse podocytes were exposed to AS-IV. Western blotting, immunofluorescence, and histochemistry were used to analyze markers of autophagy, mitochondrial dysfunction, podocyte apoptosis, and glomerulopathy in the progression of focal segmental glomerular sclerosis.</p><p><strong>Results: </strong>We observed that AS-IV can inhibit podocyte apoptosis, increased reactive oxygen species (ROS) generation, mitochondrial fragmentation, and dysfunction by inducing the Mfn2/Pink1/Parkin mitophagy pathway both in vivo and in vitro. Overexpression of Mfn2 reduced puromycin aminonucleoside (PAN)-induced podocyte injury, while downregulation of Mfn2 expression limited the renal protective effect of AS-IV by regulating mitophagy.</p><p><strong>Conclusion: </strong>AS-IV ameliorates renal function and renal pathological changes in ADR mice and inhibits PAN-induced podocyte injury by directly enhancing Mfn2/Pink1/Parkin-associated autophagy.</p>","PeriodicalId":10873,"journal":{"name":"Current molecular medicine","volume":" ","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2024-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Astragaloside IV Protects Against Podocyte Injury by Upregulating Mitophagy via the Mfn2/Pink1/Parkin Axis.\",\"authors\":\"Yuan Yuan, Yufan Wu, Minhui He, Xue Jiang\",\"doi\":\"10.2174/0115665240310818240531080353\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Podocyte injury is the most important pathological hallmark of kidney diseases. Autophagy is a critical factor that involves podocyte injury. Here, we sought to determine whether Astragaloside IV (AS-IV) was able to improve renal function and reverse podocyte injury through the regulation of autophagy.</p><p><strong>Methods: </strong>Using the Adriamycin (ADR) mice model, cultured immortalized mouse podocytes were exposed to AS-IV. Western blotting, immunofluorescence, and histochemistry were used to analyze markers of autophagy, mitochondrial dysfunction, podocyte apoptosis, and glomerulopathy in the progression of focal segmental glomerular sclerosis.</p><p><strong>Results: </strong>We observed that AS-IV can inhibit podocyte apoptosis, increased reactive oxygen species (ROS) generation, mitochondrial fragmentation, and dysfunction by inducing the Mfn2/Pink1/Parkin mitophagy pathway both in vivo and in vitro. Overexpression of Mfn2 reduced puromycin aminonucleoside (PAN)-induced podocyte injury, while downregulation of Mfn2 expression limited the renal protective effect of AS-IV by regulating mitophagy.</p><p><strong>Conclusion: </strong>AS-IV ameliorates renal function and renal pathological changes in ADR mice and inhibits PAN-induced podocyte injury by directly enhancing Mfn2/Pink1/Parkin-associated autophagy.</p>\",\"PeriodicalId\":10873,\"journal\":{\"name\":\"Current molecular medicine\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-06-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current molecular medicine\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.2174/0115665240310818240531080353\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MEDICINE, RESEARCH & EXPERIMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current molecular medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2174/0115665240310818240531080353","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
Astragaloside IV Protects Against Podocyte Injury by Upregulating Mitophagy via the Mfn2/Pink1/Parkin Axis.
Background: Podocyte injury is the most important pathological hallmark of kidney diseases. Autophagy is a critical factor that involves podocyte injury. Here, we sought to determine whether Astragaloside IV (AS-IV) was able to improve renal function and reverse podocyte injury through the regulation of autophagy.
Methods: Using the Adriamycin (ADR) mice model, cultured immortalized mouse podocytes were exposed to AS-IV. Western blotting, immunofluorescence, and histochemistry were used to analyze markers of autophagy, mitochondrial dysfunction, podocyte apoptosis, and glomerulopathy in the progression of focal segmental glomerular sclerosis.
Results: We observed that AS-IV can inhibit podocyte apoptosis, increased reactive oxygen species (ROS) generation, mitochondrial fragmentation, and dysfunction by inducing the Mfn2/Pink1/Parkin mitophagy pathway both in vivo and in vitro. Overexpression of Mfn2 reduced puromycin aminonucleoside (PAN)-induced podocyte injury, while downregulation of Mfn2 expression limited the renal protective effect of AS-IV by regulating mitophagy.
Conclusion: AS-IV ameliorates renal function and renal pathological changes in ADR mice and inhibits PAN-induced podocyte injury by directly enhancing Mfn2/Pink1/Parkin-associated autophagy.
期刊介绍:
Current Molecular Medicine is an interdisciplinary journal focused on providing the readership with current and comprehensive reviews/ mini-reviews, original research articles, short communications/letters and drug clinical trial studies on fundamental molecular mechanisms of disease pathogenesis, the development of molecular-diagnosis and/or novel approaches to rational treatment. The reviews should be of significant interest to basic researchers and clinical investigators in molecular medicine. Periodically the journal invites guest editors to devote an issue on a basic research area that shows promise to advance our understanding of the molecular mechanism(s) of a disease or has potential for clinical applications.