利用高阶统计量识别连续时间 MISO 分数系统

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Manel Chetoui, Mohamed Aoun, Rachid Malti
{"title":"利用高阶统计量识别连续时间 MISO 分数系统","authors":"Manel Chetoui, Mohamed Aoun, Rachid Malti","doi":"10.1007/s13540-024-00297-x","DOIUrl":null,"url":null,"abstract":"<p>In this paper, the problem of identifying Multiple-Input-Single-Output (MISO) systems with fractional models from noisy input-output available data is studied. The proposed idea is to use Higher-Order-Statistics (HOS), like fourth-order cumulants (<i>foc</i>), instead of noisy measurements. Thus, a fractional fourth-order cumulants based-simplified and refined instrumental variable algorithm (<i>frac-foc-sriv</i>) is first developed. Assuming that all differentiation orders are known a priori, it consists in estimating the linear coefficients of all Single-Input-Single-Output (SISO) sub-models composing the MISO model. Then, the <i>frac-foc-sriv</i> algorithm is combined with a nonlinear optimization technique to estimate all the parameters: coefficients and orders. The performances of the developed algorithms are analyzed using numerical examples. Thanks to fourth-order cumulants, which are insensitive to Gaussian noise, and the iterative strategy of the instrumental variable algorithm, the parameters estimation is consistent.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Continuous-time MISO fractional system identification using higher-order-statistics\",\"authors\":\"Manel Chetoui, Mohamed Aoun, Rachid Malti\",\"doi\":\"10.1007/s13540-024-00297-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this paper, the problem of identifying Multiple-Input-Single-Output (MISO) systems with fractional models from noisy input-output available data is studied. The proposed idea is to use Higher-Order-Statistics (HOS), like fourth-order cumulants (<i>foc</i>), instead of noisy measurements. Thus, a fractional fourth-order cumulants based-simplified and refined instrumental variable algorithm (<i>frac-foc-sriv</i>) is first developed. Assuming that all differentiation orders are known a priori, it consists in estimating the linear coefficients of all Single-Input-Single-Output (SISO) sub-models composing the MISO model. Then, the <i>frac-foc-sriv</i> algorithm is combined with a nonlinear optimization technique to estimate all the parameters: coefficients and orders. The performances of the developed algorithms are analyzed using numerical examples. Thanks to fourth-order cumulants, which are insensitive to Gaussian noise, and the iterative strategy of the instrumental variable algorithm, the parameters estimation is consistent.</p>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-06-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s13540-024-00297-x\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s13540-024-00297-x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了从噪声输入-输出可用数据中识别具有分数模型的多输入-单输出(MISO)系统的问题。所提出的想法是使用高阶统计(HOS),如四阶累积(foc),来代替噪声测量。因此,首先开发了一种基于分数四阶累积量的简化和细化工具变量算法(frac-foc-sriv)。假定所有微分阶数都是先验已知的,该算法包括估算构成 MISO 模型的所有单输入-单输出(SISO)子模型的线性系数。然后,frac-foc-sriv 算法与非线性优化技术相结合,估算出所有参数:系数和阶次。利用数值示例分析了所开发算法的性能。由于采用了对高斯噪声不敏感的四阶累积量,以及工具变量算法的迭代策略,参数估计是一致的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Continuous-time MISO fractional system identification using higher-order-statistics

Continuous-time MISO fractional system identification using higher-order-statistics

In this paper, the problem of identifying Multiple-Input-Single-Output (MISO) systems with fractional models from noisy input-output available data is studied. The proposed idea is to use Higher-Order-Statistics (HOS), like fourth-order cumulants (foc), instead of noisy measurements. Thus, a fractional fourth-order cumulants based-simplified and refined instrumental variable algorithm (frac-foc-sriv) is first developed. Assuming that all differentiation orders are known a priori, it consists in estimating the linear coefficients of all Single-Input-Single-Output (SISO) sub-models composing the MISO model. Then, the frac-foc-sriv algorithm is combined with a nonlinear optimization technique to estimate all the parameters: coefficients and orders. The performances of the developed algorithms are analyzed using numerical examples. Thanks to fourth-order cumulants, which are insensitive to Gaussian noise, and the iterative strategy of the instrumental variable algorithm, the parameters estimation is consistent.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信