{"title":"利用高阶统计量识别连续时间 MISO 分数系统","authors":"Manel Chetoui, Mohamed Aoun, Rachid Malti","doi":"10.1007/s13540-024-00297-x","DOIUrl":null,"url":null,"abstract":"<p>In this paper, the problem of identifying Multiple-Input-Single-Output (MISO) systems with fractional models from noisy input-output available data is studied. The proposed idea is to use Higher-Order-Statistics (HOS), like fourth-order cumulants (<i>foc</i>), instead of noisy measurements. Thus, a fractional fourth-order cumulants based-simplified and refined instrumental variable algorithm (<i>frac-foc-sriv</i>) is first developed. Assuming that all differentiation orders are known a priori, it consists in estimating the linear coefficients of all Single-Input-Single-Output (SISO) sub-models composing the MISO model. Then, the <i>frac-foc-sriv</i> algorithm is combined with a nonlinear optimization technique to estimate all the parameters: coefficients and orders. The performances of the developed algorithms are analyzed using numerical examples. Thanks to fourth-order cumulants, which are insensitive to Gaussian noise, and the iterative strategy of the instrumental variable algorithm, the parameters estimation is consistent.</p>","PeriodicalId":48928,"journal":{"name":"Fractional Calculus and Applied Analysis","volume":"27 1","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2024-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Continuous-time MISO fractional system identification using higher-order-statistics\",\"authors\":\"Manel Chetoui, Mohamed Aoun, Rachid Malti\",\"doi\":\"10.1007/s13540-024-00297-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this paper, the problem of identifying Multiple-Input-Single-Output (MISO) systems with fractional models from noisy input-output available data is studied. The proposed idea is to use Higher-Order-Statistics (HOS), like fourth-order cumulants (<i>foc</i>), instead of noisy measurements. Thus, a fractional fourth-order cumulants based-simplified and refined instrumental variable algorithm (<i>frac-foc-sriv</i>) is first developed. Assuming that all differentiation orders are known a priori, it consists in estimating the linear coefficients of all Single-Input-Single-Output (SISO) sub-models composing the MISO model. Then, the <i>frac-foc-sriv</i> algorithm is combined with a nonlinear optimization technique to estimate all the parameters: coefficients and orders. The performances of the developed algorithms are analyzed using numerical examples. Thanks to fourth-order cumulants, which are insensitive to Gaussian noise, and the iterative strategy of the instrumental variable algorithm, the parameters estimation is consistent.</p>\",\"PeriodicalId\":48928,\"journal\":{\"name\":\"Fractional Calculus and Applied Analysis\",\"volume\":\"27 1\",\"pages\":\"\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-06-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fractional Calculus and Applied Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s13540-024-00297-x\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fractional Calculus and Applied Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s13540-024-00297-x","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Continuous-time MISO fractional system identification using higher-order-statistics
In this paper, the problem of identifying Multiple-Input-Single-Output (MISO) systems with fractional models from noisy input-output available data is studied. The proposed idea is to use Higher-Order-Statistics (HOS), like fourth-order cumulants (foc), instead of noisy measurements. Thus, a fractional fourth-order cumulants based-simplified and refined instrumental variable algorithm (frac-foc-sriv) is first developed. Assuming that all differentiation orders are known a priori, it consists in estimating the linear coefficients of all Single-Input-Single-Output (SISO) sub-models composing the MISO model. Then, the frac-foc-sriv algorithm is combined with a nonlinear optimization technique to estimate all the parameters: coefficients and orders. The performances of the developed algorithms are analyzed using numerical examples. Thanks to fourth-order cumulants, which are insensitive to Gaussian noise, and the iterative strategy of the instrumental variable algorithm, the parameters estimation is consistent.
期刊介绍:
Fractional Calculus and Applied Analysis (FCAA, abbreviated in the World databases as Fract. Calc. Appl. Anal. or FRACT CALC APPL ANAL) is a specialized international journal for theory and applications of an important branch of Mathematical Analysis (Calculus) where differentiations and integrations can be of arbitrary non-integer order. The high standards of its contents are guaranteed by the prominent members of Editorial Board and the expertise of invited external reviewers, and proven by the recently achieved high values of impact factor (JIF) and impact rang (SJR), launching the journal to top places of the ranking lists of Thomson Reuters and Scopus.