{"title":"将溶液中偶极矩的分区分析应用于多肽主题中的功能基团","authors":"Dmitri G. Fedorov","doi":"10.1039/D4CP01654H","DOIUrl":null,"url":null,"abstract":"<p >A partition analysis based on segments is developed for density functional theory defining solute dipole moments of functional groups, and the corresponding induced solvent dipoles representing solvent screening. The accuracy of dipoles from the fragment molecular orbital method is evaluated in comparison to unfragmented values. The analysis is applied to evaluate dipole moments of side chains, amino and carbonyl groups in common polypeptide motifs, α-helixes, β-turns, and random coils in solution. The membrane domain of the ATP synthase (1B9U) is analyzed, revealing the effect of the bend splitting of the α-helix into two pieces.</p>","PeriodicalId":99,"journal":{"name":"Physical Chemistry Chemical Physics","volume":" 27","pages":" 18614-18628"},"PeriodicalIF":2.9000,"publicationDate":"2024-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Partition analysis of dipole moments in solution applied to functional groups in polypeptide motifs†\",\"authors\":\"Dmitri G. Fedorov\",\"doi\":\"10.1039/D4CP01654H\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >A partition analysis based on segments is developed for density functional theory defining solute dipole moments of functional groups, and the corresponding induced solvent dipoles representing solvent screening. The accuracy of dipoles from the fragment molecular orbital method is evaluated in comparison to unfragmented values. The analysis is applied to evaluate dipole moments of side chains, amino and carbonyl groups in common polypeptide motifs, α-helixes, β-turns, and random coils in solution. The membrane domain of the ATP synthase (1B9U) is analyzed, revealing the effect of the bend splitting of the α-helix into two pieces.</p>\",\"PeriodicalId\":99,\"journal\":{\"name\":\"Physical Chemistry Chemical Physics\",\"volume\":\" 27\",\"pages\":\" 18614-18628\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-06-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical Chemistry Chemical Physics\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2024/cp/d4cp01654h\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Chemistry Chemical Physics","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/cp/d4cp01654h","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
摘要
为密度泛函理论定义了官能团的溶质偶极矩和代表溶剂筛选的相应诱导溶剂偶极,并开发了基于片段的分区分析方法。通过与未分段值进行比较,评估了来自片段分子轨道方法的偶极子的准确性。该分析被应用于评估溶液中常见多肽图案、α-螺旋、β-匝和无规线圈中侧链、氨基和羰基的偶极矩。对 ATP 合酶(1B9U)膜结构域的分析揭示了弯曲将 α-螺旋分成两部分的影响。
Partition analysis of dipole moments in solution applied to functional groups in polypeptide motifs†
A partition analysis based on segments is developed for density functional theory defining solute dipole moments of functional groups, and the corresponding induced solvent dipoles representing solvent screening. The accuracy of dipoles from the fragment molecular orbital method is evaluated in comparison to unfragmented values. The analysis is applied to evaluate dipole moments of side chains, amino and carbonyl groups in common polypeptide motifs, α-helixes, β-turns, and random coils in solution. The membrane domain of the ATP synthase (1B9U) is analyzed, revealing the effect of the bend splitting of the α-helix into two pieces.
期刊介绍:
Physical Chemistry Chemical Physics (PCCP) is an international journal co-owned by 19 physical chemistry and physics societies from around the world. This journal publishes original, cutting-edge research in physical chemistry, chemical physics and biophysical chemistry. To be suitable for publication in PCCP, articles must include significant innovation and/or insight into physical chemistry; this is the most important criterion that reviewers and Editors will judge against when evaluating submissions.
The journal has a broad scope and welcomes contributions spanning experiment, theory, computation and data science. Topical coverage includes spectroscopy, dynamics, kinetics, statistical mechanics, thermodynamics, electrochemistry, catalysis, surface science, quantum mechanics, quantum computing and machine learning. Interdisciplinary research areas such as polymers and soft matter, materials, nanoscience, energy, surfaces/interfaces, and biophysical chemistry are welcomed if they demonstrate significant innovation and/or insight into physical chemistry. Joined experimental/theoretical studies are particularly appreciated when complementary and based on up-to-date approaches.