Catarina Moreira, Yu-Liang Chou, Chihcheng Hsieh, Chun Ouyang, João Pereira, Joaquim Jorge
{"title":"为 XAI 制定以实例为中心的反事实算法基准:从白箱到黑箱","authors":"Catarina Moreira, Yu-Liang Chou, Chihcheng Hsieh, Chun Ouyang, João Pereira, Joaquim Jorge","doi":"10.1145/3672553","DOIUrl":null,"url":null,"abstract":"<p>This study investigates the impact of machine learning models on the generation of counterfactual explanations by conducting a benchmark evaluation over three different types of models: a decision tree (fully transparent, interpretable, white-box model), a random forest (semi-interpretable, grey-box model), and a neural network (fully opaque, black-box model). We tested the counterfactual generation process using four algorithms (DiCE, WatcherCF, prototype, and GrowingSpheresCF) in the literature in 25 different datasets. Our findings indicate that: (1) Different machine learning models have little impact on the generation of counterfactual explanations; (2) Counterfactual algorithms based uniquely on proximity loss functions are not actionable and will not provide meaningful explanations; (3) One cannot have meaningful evaluation results without guaranteeing plausibility in the counterfactual generation. Algorithms that do not consider plausibility in their internal mechanisms will lead to biased and unreliable conclusions if evaluated with the current state-of-the-art metrics; (4) A counterfactual inspection analysis is strongly recommended to ensure a robust examination of counterfactual explanations and the potential identification of biases.</p>","PeriodicalId":50926,"journal":{"name":"ACM Computing Surveys","volume":null,"pages":null},"PeriodicalIF":23.8000,"publicationDate":"2024-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Benchmarking Instance-Centric Counterfactual Algorithms for XAI: From White Box to Black Box\",\"authors\":\"Catarina Moreira, Yu-Liang Chou, Chihcheng Hsieh, Chun Ouyang, João Pereira, Joaquim Jorge\",\"doi\":\"10.1145/3672553\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This study investigates the impact of machine learning models on the generation of counterfactual explanations by conducting a benchmark evaluation over three different types of models: a decision tree (fully transparent, interpretable, white-box model), a random forest (semi-interpretable, grey-box model), and a neural network (fully opaque, black-box model). We tested the counterfactual generation process using four algorithms (DiCE, WatcherCF, prototype, and GrowingSpheresCF) in the literature in 25 different datasets. Our findings indicate that: (1) Different machine learning models have little impact on the generation of counterfactual explanations; (2) Counterfactual algorithms based uniquely on proximity loss functions are not actionable and will not provide meaningful explanations; (3) One cannot have meaningful evaluation results without guaranteeing plausibility in the counterfactual generation. Algorithms that do not consider plausibility in their internal mechanisms will lead to biased and unreliable conclusions if evaluated with the current state-of-the-art metrics; (4) A counterfactual inspection analysis is strongly recommended to ensure a robust examination of counterfactual explanations and the potential identification of biases.</p>\",\"PeriodicalId\":50926,\"journal\":{\"name\":\"ACM Computing Surveys\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":23.8000,\"publicationDate\":\"2024-06-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Computing Surveys\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1145/3672553\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Computing Surveys","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1145/3672553","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
Benchmarking Instance-Centric Counterfactual Algorithms for XAI: From White Box to Black Box
This study investigates the impact of machine learning models on the generation of counterfactual explanations by conducting a benchmark evaluation over three different types of models: a decision tree (fully transparent, interpretable, white-box model), a random forest (semi-interpretable, grey-box model), and a neural network (fully opaque, black-box model). We tested the counterfactual generation process using four algorithms (DiCE, WatcherCF, prototype, and GrowingSpheresCF) in the literature in 25 different datasets. Our findings indicate that: (1) Different machine learning models have little impact on the generation of counterfactual explanations; (2) Counterfactual algorithms based uniquely on proximity loss functions are not actionable and will not provide meaningful explanations; (3) One cannot have meaningful evaluation results without guaranteeing plausibility in the counterfactual generation. Algorithms that do not consider plausibility in their internal mechanisms will lead to biased and unreliable conclusions if evaluated with the current state-of-the-art metrics; (4) A counterfactual inspection analysis is strongly recommended to ensure a robust examination of counterfactual explanations and the potential identification of biases.
期刊介绍:
ACM Computing Surveys is an academic journal that focuses on publishing surveys and tutorials on various areas of computing research and practice. The journal aims to provide comprehensive and easily understandable articles that guide readers through the literature and help them understand topics outside their specialties. In terms of impact, CSUR has a high reputation with a 2022 Impact Factor of 16.6. It is ranked 3rd out of 111 journals in the field of Computer Science Theory & Methods.
ACM Computing Surveys is indexed and abstracted in various services, including AI2 Semantic Scholar, Baidu, Clarivate/ISI: JCR, CNKI, DeepDyve, DTU, EBSCO: EDS/HOST, and IET Inspec, among others.