{"title":"LπCET:基于π微积分扩展理论的密码协议逻辑安全分析","authors":"Fusheng Wu, Jinhui Liu, Yanbin Li, Mingtao Ni","doi":"10.1049/2024/2634744","DOIUrl":null,"url":null,"abstract":"<div>\n <p>The <i>π</i>-calculus is a basic theory of mobile communication based on the notion of interaction, which, is aimed at analyzing and modeling the behaviors of communication processes in communicating and mobile systems, and is widely applied to the security analysis of cryptographic protocol’s design and implementation. But the <i>π</i>-calculus does not provide seamless logical security analysis, so the logical flaws in the design and the implementation of a cryptographic protocol cannot be discovered in time. This paper introduces logical rules and logical proofs, binary tree, and the KMP algorithm and proposes a new extension of the <i>π</i>-calculus theory, a logical security analysis method, and an algorithm. The aim is to analyze whether there are logical flaws in the design and the implementation of a cryptographic protocol, to ensure the security of the cryptographic protocol when it is encoded into software and implemented. This paper presents the logical security proof and analysis of the TLS1.3 protocol’s interactional implementation process. Empirical results show that the additional extension theory, the logical security analysis method, and the algorithm can effectively analyze whether there are logical flaws in the design and the implementation of a cryptographic protocol.</p>\n </div>","PeriodicalId":50380,"journal":{"name":"IET Information Security","volume":"2024 1","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2024-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/2024/2634744","citationCount":"0","resultStr":"{\"title\":\"LπCET: A Logic Security Analysis for Cryptographic Protocols Based on π-Calculus Extension Theory\",\"authors\":\"Fusheng Wu, Jinhui Liu, Yanbin Li, Mingtao Ni\",\"doi\":\"10.1049/2024/2634744\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n <p>The <i>π</i>-calculus is a basic theory of mobile communication based on the notion of interaction, which, is aimed at analyzing and modeling the behaviors of communication processes in communicating and mobile systems, and is widely applied to the security analysis of cryptographic protocol’s design and implementation. But the <i>π</i>-calculus does not provide seamless logical security analysis, so the logical flaws in the design and the implementation of a cryptographic protocol cannot be discovered in time. This paper introduces logical rules and logical proofs, binary tree, and the KMP algorithm and proposes a new extension of the <i>π</i>-calculus theory, a logical security analysis method, and an algorithm. The aim is to analyze whether there are logical flaws in the design and the implementation of a cryptographic protocol, to ensure the security of the cryptographic protocol when it is encoded into software and implemented. This paper presents the logical security proof and analysis of the TLS1.3 protocol’s interactional implementation process. Empirical results show that the additional extension theory, the logical security analysis method, and the algorithm can effectively analyze whether there are logical flaws in the design and the implementation of a cryptographic protocol.</p>\\n </div>\",\"PeriodicalId\":50380,\"journal\":{\"name\":\"IET Information Security\",\"volume\":\"2024 1\",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2024-06-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1049/2024/2634744\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IET Information Security\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1049/2024/2634744\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Information Security","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/2024/2634744","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
LπCET: A Logic Security Analysis for Cryptographic Protocols Based on π-Calculus Extension Theory
The π-calculus is a basic theory of mobile communication based on the notion of interaction, which, is aimed at analyzing and modeling the behaviors of communication processes in communicating and mobile systems, and is widely applied to the security analysis of cryptographic protocol’s design and implementation. But the π-calculus does not provide seamless logical security analysis, so the logical flaws in the design and the implementation of a cryptographic protocol cannot be discovered in time. This paper introduces logical rules and logical proofs, binary tree, and the KMP algorithm and proposes a new extension of the π-calculus theory, a logical security analysis method, and an algorithm. The aim is to analyze whether there are logical flaws in the design and the implementation of a cryptographic protocol, to ensure the security of the cryptographic protocol when it is encoded into software and implemented. This paper presents the logical security proof and analysis of the TLS1.3 protocol’s interactional implementation process. Empirical results show that the additional extension theory, the logical security analysis method, and the algorithm can effectively analyze whether there are logical flaws in the design and the implementation of a cryptographic protocol.
期刊介绍:
IET Information Security publishes original research papers in the following areas of information security and cryptography. Submitting authors should specify clearly in their covering statement the area into which their paper falls.
Scope:
Access Control and Database Security
Ad-Hoc Network Aspects
Anonymity and E-Voting
Authentication
Block Ciphers and Hash Functions
Blockchain, Bitcoin (Technical aspects only)
Broadcast Encryption and Traitor Tracing
Combinatorial Aspects
Covert Channels and Information Flow
Critical Infrastructures
Cryptanalysis
Dependability
Digital Rights Management
Digital Signature Schemes
Digital Steganography
Economic Aspects of Information Security
Elliptic Curve Cryptography and Number Theory
Embedded Systems Aspects
Embedded Systems Security and Forensics
Financial Cryptography
Firewall Security
Formal Methods and Security Verification
Human Aspects
Information Warfare and Survivability
Intrusion Detection
Java and XML Security
Key Distribution
Key Management
Malware
Multi-Party Computation and Threshold Cryptography
Peer-to-peer Security
PKIs
Public-Key and Hybrid Encryption
Quantum Cryptography
Risks of using Computers
Robust Networks
Secret Sharing
Secure Electronic Commerce
Software Obfuscation
Stream Ciphers
Trust Models
Watermarking and Fingerprinting
Special Issues. Current Call for Papers:
Security on Mobile and IoT devices - https://digital-library.theiet.org/files/IET_IFS_SMID_CFP.pdf