Lena Bonassin, Lucian Pârvulescu, Ljudevit Luka Boštjančić, Caterina Francesconi, Judith Paetsch, Christelle Rutz, Odile Lecompte, Kathrin Theissinger
{"title":"从基因组学角度了解闲螯虾 Austropotamobius bihariensis Pârvulescu, 2019 年的保护状况:阿普塞尼山脉特有螯虾物种的遗传多样性较低。","authors":"Lena Bonassin, Lucian Pârvulescu, Ljudevit Luka Boštjančić, Caterina Francesconi, Judith Paetsch, Christelle Rutz, Odile Lecompte, Kathrin Theissinger","doi":"10.1186/s12862-024-02268-5","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Biodiversity in freshwater ecosystems is declining due to an increased anthropogenic footprint. Freshwater crayfish are keystone species in freshwater ecosystems and play a crucial role in shaping the structure and function of their habitats. The Idle Crayfish Austropotamobius bihariensis is a native European species with a narrow distribution range, endemic to the Apuseni Mountains (Romania). Although its area is small, the populations are anthropogenically fragmented. In this context, the assessment of its conservation status is timely.</p><p><strong>Results: </strong>Using a reduced representation sequencing approach, we identified 4875 genomic SNPs from individuals belonging to 13 populations across the species distribution range. Subsequent population genomic analyses highlighted low heterozygosity levels, low number of private alleles and small effective population size. Our structuring analyses revealed that the genomic similarity of the populations is conserved within the river basins.</p><p><strong>Conclusion: </strong>Genomic SNPs represented excellent tools to gain insights into intraspecific genomic diversity and population structure of the Idle Crayfish. Our study highlighted that the analysed populations are at risk due to their limited genetic diversity, which makes them extremely vulnerable to environmental alterations. Thus, our results emphasize the need for conservation measures and can be used as a baseline to establish species management programs.</p>","PeriodicalId":93910,"journal":{"name":"BMC ecology and evolution","volume":"24 1","pages":"78"},"PeriodicalIF":2.3000,"publicationDate":"2024-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11165767/pdf/","citationCount":"0","resultStr":"{\"title\":\"Genomic insights into the conservation status of the Idle Crayfish Austropotamobius bihariensis Pârvulescu, 2019: low genetic diversity in the endemic crayfish species of the Apuseni Mountains.\",\"authors\":\"Lena Bonassin, Lucian Pârvulescu, Ljudevit Luka Boštjančić, Caterina Francesconi, Judith Paetsch, Christelle Rutz, Odile Lecompte, Kathrin Theissinger\",\"doi\":\"10.1186/s12862-024-02268-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Biodiversity in freshwater ecosystems is declining due to an increased anthropogenic footprint. Freshwater crayfish are keystone species in freshwater ecosystems and play a crucial role in shaping the structure and function of their habitats. The Idle Crayfish Austropotamobius bihariensis is a native European species with a narrow distribution range, endemic to the Apuseni Mountains (Romania). Although its area is small, the populations are anthropogenically fragmented. In this context, the assessment of its conservation status is timely.</p><p><strong>Results: </strong>Using a reduced representation sequencing approach, we identified 4875 genomic SNPs from individuals belonging to 13 populations across the species distribution range. Subsequent population genomic analyses highlighted low heterozygosity levels, low number of private alleles and small effective population size. Our structuring analyses revealed that the genomic similarity of the populations is conserved within the river basins.</p><p><strong>Conclusion: </strong>Genomic SNPs represented excellent tools to gain insights into intraspecific genomic diversity and population structure of the Idle Crayfish. Our study highlighted that the analysed populations are at risk due to their limited genetic diversity, which makes them extremely vulnerable to environmental alterations. Thus, our results emphasize the need for conservation measures and can be used as a baseline to establish species management programs.</p>\",\"PeriodicalId\":93910,\"journal\":{\"name\":\"BMC ecology and evolution\",\"volume\":\"24 1\",\"pages\":\"78\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-06-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11165767/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"BMC ecology and evolution\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1186/s12862-024-02268-5\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ECOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC ecology and evolution","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s12862-024-02268-5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ECOLOGY","Score":null,"Total":0}
Genomic insights into the conservation status of the Idle Crayfish Austropotamobius bihariensis Pârvulescu, 2019: low genetic diversity in the endemic crayfish species of the Apuseni Mountains.
Background: Biodiversity in freshwater ecosystems is declining due to an increased anthropogenic footprint. Freshwater crayfish are keystone species in freshwater ecosystems and play a crucial role in shaping the structure and function of their habitats. The Idle Crayfish Austropotamobius bihariensis is a native European species with a narrow distribution range, endemic to the Apuseni Mountains (Romania). Although its area is small, the populations are anthropogenically fragmented. In this context, the assessment of its conservation status is timely.
Results: Using a reduced representation sequencing approach, we identified 4875 genomic SNPs from individuals belonging to 13 populations across the species distribution range. Subsequent population genomic analyses highlighted low heterozygosity levels, low number of private alleles and small effective population size. Our structuring analyses revealed that the genomic similarity of the populations is conserved within the river basins.
Conclusion: Genomic SNPs represented excellent tools to gain insights into intraspecific genomic diversity and population structure of the Idle Crayfish. Our study highlighted that the analysed populations are at risk due to their limited genetic diversity, which makes them extremely vulnerable to environmental alterations. Thus, our results emphasize the need for conservation measures and can be used as a baseline to establish species management programs.