穴居限制了螯虾的表型多样性。

IF 2.2 3区 生物学 Q1 ZOOLOGY
Emmy M Delekta, Matthew A Kolmann
{"title":"穴居限制了螯虾的表型多样性。","authors":"Emmy M Delekta, Matthew A Kolmann","doi":"10.1093/icb/icae067","DOIUrl":null,"url":null,"abstract":"<p><p>Strong selective pressure on phenotype can arise when habitat transitions fundamentally alter the physical media in which animals live, such as the invasion of land by lobe-finned fishes and insects. When environmental gradients differ drastically among habitats and multiple lineages transition between these habitats, we expect phenotypic convergence to be prevalent. One transition where widespread convergence has been observed is the shift from aboveground to subterranean environments in fossorial animals. Subterranean environments are low-light, confined spaces and tend to be hypoxic or anoxic, not to mention that the act of burrowing itself demands morphological specializations for excavation. Research suggests burrowing promotes morphological convergence in crayfish, with non-burrowing forms having a dorsoventrally compressed carapace and long, slender claws (chelae), while primary burrowing forms have a dorsolaterally compressed carapace and shorter, more powerful claws. However, earlier ecomorphological comparisons relied on qualitative rather than quantitative assessments of phenotypic differences. This study tested for convergence in North American crayfishes using a geometric morphometric approach. We photographed the carapace and claw for representative species across 13 North American genera. We hypothesized that crayfishes that occur in similar habitats and exhibit similar burrowing behaviors, would converge in their carapace and claw shapes. We found evidence for convergence in carapace and claw morphologies in burrowing crayfishes. However, claw phenotypes did not converge as strongly as carapace shape, an example of \"imperfect\" or \"incomplete\" convergence we attribute to the multiple competing demands on claw form and function. We argue that nuances in habitat characteristics, like soil type or compaction, make complete convergence unlikely for range- and dispersal-limited fossorial crayfishes.</p>","PeriodicalId":54971,"journal":{"name":"Integrative and Comparative Biology","volume":" ","pages":"1454-1466"},"PeriodicalIF":2.2000,"publicationDate":"2024-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Burrowing Constrains the Phenotypic Diversity of Fossorial Crayfish.\",\"authors\":\"Emmy M Delekta, Matthew A Kolmann\",\"doi\":\"10.1093/icb/icae067\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Strong selective pressure on phenotype can arise when habitat transitions fundamentally alter the physical media in which animals live, such as the invasion of land by lobe-finned fishes and insects. When environmental gradients differ drastically among habitats and multiple lineages transition between these habitats, we expect phenotypic convergence to be prevalent. One transition where widespread convergence has been observed is the shift from aboveground to subterranean environments in fossorial animals. Subterranean environments are low-light, confined spaces and tend to be hypoxic or anoxic, not to mention that the act of burrowing itself demands morphological specializations for excavation. Research suggests burrowing promotes morphological convergence in crayfish, with non-burrowing forms having a dorsoventrally compressed carapace and long, slender claws (chelae), while primary burrowing forms have a dorsolaterally compressed carapace and shorter, more powerful claws. However, earlier ecomorphological comparisons relied on qualitative rather than quantitative assessments of phenotypic differences. This study tested for convergence in North American crayfishes using a geometric morphometric approach. We photographed the carapace and claw for representative species across 13 North American genera. We hypothesized that crayfishes that occur in similar habitats and exhibit similar burrowing behaviors, would converge in their carapace and claw shapes. We found evidence for convergence in carapace and claw morphologies in burrowing crayfishes. However, claw phenotypes did not converge as strongly as carapace shape, an example of \\\"imperfect\\\" or \\\"incomplete\\\" convergence we attribute to the multiple competing demands on claw form and function. We argue that nuances in habitat characteristics, like soil type or compaction, make complete convergence unlikely for range- and dispersal-limited fossorial crayfishes.</p>\",\"PeriodicalId\":54971,\"journal\":{\"name\":\"Integrative and Comparative Biology\",\"volume\":\" \",\"pages\":\"1454-1466\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-11-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Integrative and Comparative Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/icb/icae067\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ZOOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Integrative and Comparative Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/icb/icae067","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ZOOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

当生境转换从根本上改变了动物生活的物理介质时,例如叶鳍鱼类和昆虫入侵陆地,就会对表型产生强大的选择压力。当不同栖息地的环境梯度差异巨大,且多个品系在这些栖息地之间过渡时,我们预计表型趋同将十分普遍。在化石动物从地面环境向地下环境转变的过程中,我们观察到了广泛的趋同现象。地下环境是低光照的密闭空间,往往缺氧或缺氧,更不用说穴居行为本身就要求挖掘的形态特化。研究表明,穴居促进了小龙虾形态的趋同,非穴居形式的小龙虾具有背腹压缩的躯壳和细长的爪(螯),而初级穴居形式的小龙虾具有背腹压缩的躯壳和更短更有力的爪(螯)。然而,早期的非形态学比较依赖于对表型差异的定性而非定量评估。本研究采用几何形态计量学方法测试了北美螯虾的趋同性。我们拍摄了北美十三个属的代表性物种的甲壳和爪。我们假设,生活在相似栖息地并表现出相似穴居行为的蜡嘴鱼,其甲壳和爪的形状会趋同。我们发现有证据表明穴居蜡嘴鱼的甲壳和爪的形态趋同。然而,爪的表型并不像躯壳形状那样强烈趋同,这是 "不完美 "或 "不完全 "趋同的一个例子,我们将其归因于对爪的形态和功能的多种竞争性需求。我们认为,栖息地特征的细微差别(如土壤类型或压实度)使得范围和扩散受限的化石螯虾不可能完全趋同。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Burrowing Constrains the Phenotypic Diversity of Fossorial Crayfish.

Strong selective pressure on phenotype can arise when habitat transitions fundamentally alter the physical media in which animals live, such as the invasion of land by lobe-finned fishes and insects. When environmental gradients differ drastically among habitats and multiple lineages transition between these habitats, we expect phenotypic convergence to be prevalent. One transition where widespread convergence has been observed is the shift from aboveground to subterranean environments in fossorial animals. Subterranean environments are low-light, confined spaces and tend to be hypoxic or anoxic, not to mention that the act of burrowing itself demands morphological specializations for excavation. Research suggests burrowing promotes morphological convergence in crayfish, with non-burrowing forms having a dorsoventrally compressed carapace and long, slender claws (chelae), while primary burrowing forms have a dorsolaterally compressed carapace and shorter, more powerful claws. However, earlier ecomorphological comparisons relied on qualitative rather than quantitative assessments of phenotypic differences. This study tested for convergence in North American crayfishes using a geometric morphometric approach. We photographed the carapace and claw for representative species across 13 North American genera. We hypothesized that crayfishes that occur in similar habitats and exhibit similar burrowing behaviors, would converge in their carapace and claw shapes. We found evidence for convergence in carapace and claw morphologies in burrowing crayfishes. However, claw phenotypes did not converge as strongly as carapace shape, an example of "imperfect" or "incomplete" convergence we attribute to the multiple competing demands on claw form and function. We argue that nuances in habitat characteristics, like soil type or compaction, make complete convergence unlikely for range- and dispersal-limited fossorial crayfishes.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.70
自引率
7.70%
发文量
150
审稿时长
6-12 weeks
期刊介绍: Integrative and Comparative Biology ( ICB ), formerly American Zoologist , is one of the most highly respected and cited journals in the field of biology. The journal''s primary focus is to integrate the varying disciplines in this broad field, while maintaining the highest scientific quality. ICB''s peer-reviewed symposia provide first class syntheses of the top research in a field. ICB also publishes book reviews, reports, and special bulletins.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信