Santiago A. Forero, Sydney Liu, Netra Shetty, Alexander G. Ophir
{"title":"结合大脑的重新布线:成对结合的雌性草原田鼠在过渡到母性时基因表达发生了变化。","authors":"Santiago A. Forero, Sydney Liu, Netra Shetty, Alexander G. Ophir","doi":"10.1111/gbb.12906","DOIUrl":null,"url":null,"abstract":"<p>Motherhood is a costly life-history transition accompanied by behavioral and neural plasticity necessary for offspring care. Motherhood in the monogamous prairie vole is associated with decreased pair bond strength, suggesting a trade-off between parental investment and pair bond maintenance. Neural mechanisms governing pair bonds and maternal bonds overlap, creating possible competition between the two. We measured mRNA expression of genes encoding receptors for oxytocin (<i>oxtr</i>), dopamine (<i>d1r</i> and <i>d2r</i>), mu-opioids (<i>oprm1a</i>), and kappa-opioids (<i>oprk1a</i>) within three brain areas processing salience of sociosensory cues (anterior cingulate cortex; ACC), pair bonding (nucleus accumbens; NAc), and maternal care (medial preoptic area; MPOA). We compared gene expression differences between pair bonded prairie voles that were never pregnant, pregnant (~day 16 of pregnancy), and recent mothers (day 3 of lactation). We found greater gene expression in the NAc (<i>oxtr</i>, <i>d2r</i>, <i>oprm1a</i>, and <i>oprk1a</i>) and MPOA (<i>oxtr</i>, <i>d1r</i>, <i>d2r</i>, <i>oprm1a</i>, and <i>oprk1a</i>) following the transition to motherhood. Expression for all five genes in the ACC was greatest for females that had been bonded for longer. Gene expression within each region was highly correlated, indicating that oxytocin, dopamine, and opioids comprise a complimentary gene network for social signaling. ACC-NAc gene expression correlations indicated that being a mother (<i>oxtr</i> and <i>d1r</i>) or maintaining long-term pair bonds (<i>oprm1a</i>) relies on the coordination of different signaling systems within the same circuit. Our study suggests the maternal brain undergoes changes that prepare females to face the trade-off associated with increased emotional investment in offspring, while also maintaining a pair bond.</p>","PeriodicalId":50426,"journal":{"name":"Genes Brain and Behavior","volume":"23 3","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2024-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/gbb.12906","citationCount":"0","resultStr":"{\"title\":\"Re-wiring of the bonded brain: Gene expression among pair bonded female prairie voles changes as they transition to motherhood\",\"authors\":\"Santiago A. Forero, Sydney Liu, Netra Shetty, Alexander G. Ophir\",\"doi\":\"10.1111/gbb.12906\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Motherhood is a costly life-history transition accompanied by behavioral and neural plasticity necessary for offspring care. Motherhood in the monogamous prairie vole is associated with decreased pair bond strength, suggesting a trade-off between parental investment and pair bond maintenance. Neural mechanisms governing pair bonds and maternal bonds overlap, creating possible competition between the two. We measured mRNA expression of genes encoding receptors for oxytocin (<i>oxtr</i>), dopamine (<i>d1r</i> and <i>d2r</i>), mu-opioids (<i>oprm1a</i>), and kappa-opioids (<i>oprk1a</i>) within three brain areas processing salience of sociosensory cues (anterior cingulate cortex; ACC), pair bonding (nucleus accumbens; NAc), and maternal care (medial preoptic area; MPOA). We compared gene expression differences between pair bonded prairie voles that were never pregnant, pregnant (~day 16 of pregnancy), and recent mothers (day 3 of lactation). We found greater gene expression in the NAc (<i>oxtr</i>, <i>d2r</i>, <i>oprm1a</i>, and <i>oprk1a</i>) and MPOA (<i>oxtr</i>, <i>d1r</i>, <i>d2r</i>, <i>oprm1a</i>, and <i>oprk1a</i>) following the transition to motherhood. Expression for all five genes in the ACC was greatest for females that had been bonded for longer. Gene expression within each region was highly correlated, indicating that oxytocin, dopamine, and opioids comprise a complimentary gene network for social signaling. ACC-NAc gene expression correlations indicated that being a mother (<i>oxtr</i> and <i>d1r</i>) or maintaining long-term pair bonds (<i>oprm1a</i>) relies on the coordination of different signaling systems within the same circuit. Our study suggests the maternal brain undergoes changes that prepare females to face the trade-off associated with increased emotional investment in offspring, while also maintaining a pair bond.</p>\",\"PeriodicalId\":50426,\"journal\":{\"name\":\"Genes Brain and Behavior\",\"volume\":\"23 3\",\"pages\":\"\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-06-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1111/gbb.12906\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Genes Brain and Behavior\",\"FirstCategoryId\":\"102\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/gbb.12906\",\"RegionNum\":4,\"RegionCategory\":\"心理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BEHAVIORAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genes Brain and Behavior","FirstCategoryId":"102","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/gbb.12906","RegionNum":4,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BEHAVIORAL SCIENCES","Score":null,"Total":0}
Re-wiring of the bonded brain: Gene expression among pair bonded female prairie voles changes as they transition to motherhood
Motherhood is a costly life-history transition accompanied by behavioral and neural plasticity necessary for offspring care. Motherhood in the monogamous prairie vole is associated with decreased pair bond strength, suggesting a trade-off between parental investment and pair bond maintenance. Neural mechanisms governing pair bonds and maternal bonds overlap, creating possible competition between the two. We measured mRNA expression of genes encoding receptors for oxytocin (oxtr), dopamine (d1r and d2r), mu-opioids (oprm1a), and kappa-opioids (oprk1a) within three brain areas processing salience of sociosensory cues (anterior cingulate cortex; ACC), pair bonding (nucleus accumbens; NAc), and maternal care (medial preoptic area; MPOA). We compared gene expression differences between pair bonded prairie voles that were never pregnant, pregnant (~day 16 of pregnancy), and recent mothers (day 3 of lactation). We found greater gene expression in the NAc (oxtr, d2r, oprm1a, and oprk1a) and MPOA (oxtr, d1r, d2r, oprm1a, and oprk1a) following the transition to motherhood. Expression for all five genes in the ACC was greatest for females that had been bonded for longer. Gene expression within each region was highly correlated, indicating that oxytocin, dopamine, and opioids comprise a complimentary gene network for social signaling. ACC-NAc gene expression correlations indicated that being a mother (oxtr and d1r) or maintaining long-term pair bonds (oprm1a) relies on the coordination of different signaling systems within the same circuit. Our study suggests the maternal brain undergoes changes that prepare females to face the trade-off associated with increased emotional investment in offspring, while also maintaining a pair bond.
期刊介绍:
Genes, Brain and Behavior was launched in 2002 with the aim of publishing top quality research in behavioral and neural genetics in their broadest sense. The emphasis is on the analysis of the behavioral and neural phenotypes under consideration, the unifying theme being the genetic approach as a tool to increase our understanding of these phenotypes.
Genes Brain and Behavior is pleased to offer the following features:
8 issues per year
online submissions with first editorial decisions within 3-4 weeks and fast publication at Wiley-Blackwells
High visibility through its coverage by PubMed/Medline, Current Contents and other major abstracting and indexing services
Inclusion in the Wiley-Blackwell consortial license, extending readership to thousands of international libraries and institutions
A large and varied editorial board comprising of international specialists.