从单斜坡增量跑步测试中识别心率和摄氧量的时变动态。

IF 2.3 4区 医学 Q3 BIOPHYSICS
Jasper Gielen, Loes Stessens, Romain Meeusen, Jean-Marie Aerts
{"title":"从单斜坡增量跑步测试中识别心率和摄氧量的时变动态。","authors":"Jasper Gielen, Loes Stessens, Romain Meeusen, Jean-Marie Aerts","doi":"10.1088/1361-6579/ad56f7","DOIUrl":null,"url":null,"abstract":"<p><p><i>Objective.</i>The fact that ramp incremental exercise yields quasi-linear responses for pulmonary oxygen uptake (V˙O2) and heart rate (HR) seems contradictory to the well-known non-linear behavior of underlying physiological processes. Prior research highlights this issue and demonstrates how a balancing of system gain and response time parameters causes linearV˙O2responses during ramp tests. This study builds upon this knowledge and extracts the time-varying dynamics directly from HR andV˙O2data of single ramp incremental running tests.<i>Approach.</i>A large-scale open access dataset of 735 ramp incremental running tests is analyzed. The dynamics are obtained by means of 1st order autoregressive and exogenous models with time-variant parameters. This allows for the estimates of time constant (<i>τ</i>) and steady state gain (SSG) to vary with work rate.<i>Main results.</i>As the work rate increases,<i>τ</i>-values increase on average from 38 to 132 s for HR, and from 27 to 35 s forV˙O2. Both increases are statistically significant (<i>p</i>< 0.01). Further, SSG-values decrease on average from 14 to 9 bpm (km·h<sup>-1</sup>)<sup>-1</sup>for HR, and from 218 to 144 ml·min<sup>-1</sup>forV˙O2(<i>p</i>< 0.01 for decrease parameters of HR andV˙O2). The results of this modeling approach are line with literature reporting on cardiorespiratory dynamics obtained using standard procedures.<i>Significance.</i>We show that time-variant modeling is able to determine the time-varying dynamics HR andV˙O2responses to ramp incremental running directly from individual tests. The proposed method allows for gaining insights into the cardiorespiratory response characteristics when no repeated measurements are available.</p>","PeriodicalId":20047,"journal":{"name":"Physiological measurement","volume":null,"pages":null},"PeriodicalIF":2.3000,"publicationDate":"2024-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Identifying time-varying dynamics of heart rate and oxygen uptake from single ramp incremental running tests.\",\"authors\":\"Jasper Gielen, Loes Stessens, Romain Meeusen, Jean-Marie Aerts\",\"doi\":\"10.1088/1361-6579/ad56f7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p><i>Objective.</i>The fact that ramp incremental exercise yields quasi-linear responses for pulmonary oxygen uptake (V˙O2) and heart rate (HR) seems contradictory to the well-known non-linear behavior of underlying physiological processes. Prior research highlights this issue and demonstrates how a balancing of system gain and response time parameters causes linearV˙O2responses during ramp tests. This study builds upon this knowledge and extracts the time-varying dynamics directly from HR andV˙O2data of single ramp incremental running tests.<i>Approach.</i>A large-scale open access dataset of 735 ramp incremental running tests is analyzed. The dynamics are obtained by means of 1st order autoregressive and exogenous models with time-variant parameters. This allows for the estimates of time constant (<i>τ</i>) and steady state gain (SSG) to vary with work rate.<i>Main results.</i>As the work rate increases,<i>τ</i>-values increase on average from 38 to 132 s for HR, and from 27 to 35 s forV˙O2. Both increases are statistically significant (<i>p</i>< 0.01). Further, SSG-values decrease on average from 14 to 9 bpm (km·h<sup>-1</sup>)<sup>-1</sup>for HR, and from 218 to 144 ml·min<sup>-1</sup>forV˙O2(<i>p</i>< 0.01 for decrease parameters of HR andV˙O2). The results of this modeling approach are line with literature reporting on cardiorespiratory dynamics obtained using standard procedures.<i>Significance.</i>We show that time-variant modeling is able to determine the time-varying dynamics HR andV˙O2responses to ramp incremental running directly from individual tests. The proposed method allows for gaining insights into the cardiorespiratory response characteristics when no repeated measurements are available.</p>\",\"PeriodicalId\":20047,\"journal\":{\"name\":\"Physiological measurement\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-06-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physiological measurement\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1088/1361-6579/ad56f7\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physiological measurement","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1088/1361-6579/ad56f7","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

目的:斜坡递增运动会对肺摄氧量(V.J.O.)和心率(HR)产生准线性响应,这一事实似乎与众所周知的基本生理过程的非线性行为相矛盾。先前的研究强调了这一问题,并展示了平衡系统增益和响应时间参数如何在斜坡测试中导致 V̇O2 线性响应。本研究以这一知识为基础,直接从单斜坡增量跑步测试的心率和 V̇O2 数据中提取时变动态:方法:对包含 735 个斜坡递增跑步测试的大规模开放数据集进行分析。通过参数随时间变化的一阶 ARX 模型获得动态数据。这使得时间常数(τ)和稳态增益(SSG)的估计值随工作速率而变化:主要结果:随着工作速率的增加,心率的 τ 值平均从 38 秒增加到 132 秒,而 V̇O2 的 τ 值平均从 27 秒增加到 35 秒。这两个值的增加都具有统计学意义(p < 0.01)。此外,心率的 SSG 值平均从 14 bpm/(km.h-1) 降至 9 bpm/(km.h-1),血氧浓度平均从 218 mL.min-1 降至 144 mL.min-1 (心率和血氧浓度的下降参数 p <0.01)。这种建模方法的结果与使用标准程序获得的心肺动力学文献报告一致:我们的研究表明,时变模型能够直接从单项测试中确定心率和血氧饱和度对斜坡增量跑的时变动态响应。在没有重复测量数据的情况下,所提出的方法有助于深入了解心肺反应特征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Identifying time-varying dynamics of heart rate and oxygen uptake from single ramp incremental running tests.

Objective.The fact that ramp incremental exercise yields quasi-linear responses for pulmonary oxygen uptake (V˙O2) and heart rate (HR) seems contradictory to the well-known non-linear behavior of underlying physiological processes. Prior research highlights this issue and demonstrates how a balancing of system gain and response time parameters causes linearV˙O2responses during ramp tests. This study builds upon this knowledge and extracts the time-varying dynamics directly from HR andV˙O2data of single ramp incremental running tests.Approach.A large-scale open access dataset of 735 ramp incremental running tests is analyzed. The dynamics are obtained by means of 1st order autoregressive and exogenous models with time-variant parameters. This allows for the estimates of time constant (τ) and steady state gain (SSG) to vary with work rate.Main results.As the work rate increases,τ-values increase on average from 38 to 132 s for HR, and from 27 to 35 s forV˙O2. Both increases are statistically significant (p< 0.01). Further, SSG-values decrease on average from 14 to 9 bpm (km·h-1)-1for HR, and from 218 to 144 ml·min-1forV˙O2(p< 0.01 for decrease parameters of HR andV˙O2). The results of this modeling approach are line with literature reporting on cardiorespiratory dynamics obtained using standard procedures.Significance.We show that time-variant modeling is able to determine the time-varying dynamics HR andV˙O2responses to ramp incremental running directly from individual tests. The proposed method allows for gaining insights into the cardiorespiratory response characteristics when no repeated measurements are available.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Physiological measurement
Physiological measurement 生物-工程:生物医学
CiteScore
5.50
自引率
9.40%
发文量
124
审稿时长
3 months
期刊介绍: Physiological Measurement publishes papers about the quantitative assessment and visualization of physiological function in clinical research and practice, with an emphasis on the development of new methods of measurement and their validation. Papers are published on topics including: applied physiology in illness and health electrical bioimpedance, optical and acoustic measurement techniques advanced methods of time series and other data analysis biomedical and clinical engineering in-patient and ambulatory monitoring point-of-care technologies novel clinical measurements of cardiovascular, neurological, and musculoskeletal systems. measurements in molecular, cellular and organ physiology and electrophysiology physiological modeling and simulation novel biomedical sensors, instruments, devices and systems measurement standards and guidelines.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信