DAB2IP 在乳腺癌缺氧状态下通过调节 HIF-1α 泛素化抑制葡萄糖摄取

IF 5.9 2区 医学 Q1 ONCOLOGY
Hongliang Dong, Weiyi Jia, Weijian Meng, Rui Zhang, Zhihong Qi, Zhuo Chen, Sophia Xie, Jiang Min, Liang Liu, Jie Shen
{"title":"DAB2IP 在乳腺癌缺氧状态下通过调节 HIF-1α 泛素化抑制葡萄糖摄取","authors":"Hongliang Dong, Weiyi Jia, Weijian Meng, Rui Zhang, Zhihong Qi, Zhuo Chen, Sophia Xie, Jiang Min, Liang Liu, Jie Shen","doi":"10.1038/s41389-024-00523-4","DOIUrl":null,"url":null,"abstract":"<p><p>Metabolic reprogramming has become increasingly important in tumor biology research. The glucose metabolic pathway is a major energy source and is often dysregulated in breast cancer. DAB2IP is widely reported to be a tumor suppressor that acts as a scaffold protein to suppress tumor malignancy in breast cancer. Interestingly, DAB2IP has also been found to be a potential regulator of glucose uptake; however, the exact mechanism remains unclear. In this study, we found that DAB2IP inhibited glucose uptake under hypoxia conditions in breast cancer cells by suppressing HIF-1α signals. Mechanically, DAB2IP interacted with the E3 ubiquitin ligase STUB1 via its PER domain, thus triggering STUB1 mediated HIF-1α ubiquitylation and degradation, and inhibit glucose metabolism and tumor progression. Deleting the PER domain abrogated the DAB2IP-related inhibitory effects on glucose uptake, intracellular ATP production, and lactic acid production in breast cancer cells. These findings elucidate the biological roles of DAB2IP in cancer-related glucose metabolism as well as a novel mechanism by which STUB1-driven HIF-1α ubiquitylated degradation is regulated in breast cancer.</p>","PeriodicalId":19489,"journal":{"name":"Oncogenesis","volume":null,"pages":null},"PeriodicalIF":5.9000,"publicationDate":"2024-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11166643/pdf/","citationCount":"0","resultStr":"{\"title\":\"DAB2IP inhibits glucose uptake by modulating HIF-1α ubiquitination under hypoxia in breast cancer.\",\"authors\":\"Hongliang Dong, Weiyi Jia, Weijian Meng, Rui Zhang, Zhihong Qi, Zhuo Chen, Sophia Xie, Jiang Min, Liang Liu, Jie Shen\",\"doi\":\"10.1038/s41389-024-00523-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Metabolic reprogramming has become increasingly important in tumor biology research. The glucose metabolic pathway is a major energy source and is often dysregulated in breast cancer. DAB2IP is widely reported to be a tumor suppressor that acts as a scaffold protein to suppress tumor malignancy in breast cancer. Interestingly, DAB2IP has also been found to be a potential regulator of glucose uptake; however, the exact mechanism remains unclear. In this study, we found that DAB2IP inhibited glucose uptake under hypoxia conditions in breast cancer cells by suppressing HIF-1α signals. Mechanically, DAB2IP interacted with the E3 ubiquitin ligase STUB1 via its PER domain, thus triggering STUB1 mediated HIF-1α ubiquitylation and degradation, and inhibit glucose metabolism and tumor progression. Deleting the PER domain abrogated the DAB2IP-related inhibitory effects on glucose uptake, intracellular ATP production, and lactic acid production in breast cancer cells. These findings elucidate the biological roles of DAB2IP in cancer-related glucose metabolism as well as a novel mechanism by which STUB1-driven HIF-1α ubiquitylated degradation is regulated in breast cancer.</p>\",\"PeriodicalId\":19489,\"journal\":{\"name\":\"Oncogenesis\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.9000,\"publicationDate\":\"2024-06-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11166643/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Oncogenesis\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1038/s41389-024-00523-4\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ONCOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Oncogenesis","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41389-024-00523-4","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

代谢重编程在肿瘤生物学研究中变得越来越重要。葡萄糖代谢途径是一种主要的能量来源,在乳腺癌中经常出现失调。据广泛报道,DAB2IP 是一种肿瘤抑制因子,可作为支架蛋白抑制乳腺癌中肿瘤的恶性程度。有趣的是,DAB2IP 还被发现是葡萄糖摄取的潜在调节因子,但其确切机制仍不清楚。本研究发现,在缺氧条件下,DAB2IP 通过抑制 HIF-1α 信号来抑制乳腺癌细胞的葡萄糖摄取。在机制上,DAB2IP通过其PER结构域与E3泛素连接酶STUB1相互作用,从而引发STUB1介导的HIF-1α泛素化和降解,抑制葡萄糖代谢和肿瘤进展。删除 PER 结构域可减弱 DAB2IP 对乳腺癌细胞葡萄糖摄取、细胞内 ATP 生成和乳酸生成的抑制作用。这些发现阐明了 DAB2IP 在与癌症相关的葡萄糖代谢中的生物学作用,以及 STUB1 驱动的 HIF-1α 泛素化降解在乳腺癌中的新调控机制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

DAB2IP inhibits glucose uptake by modulating HIF-1α ubiquitination under hypoxia in breast cancer.

DAB2IP inhibits glucose uptake by modulating HIF-1α ubiquitination under hypoxia in breast cancer.

Metabolic reprogramming has become increasingly important in tumor biology research. The glucose metabolic pathway is a major energy source and is often dysregulated in breast cancer. DAB2IP is widely reported to be a tumor suppressor that acts as a scaffold protein to suppress tumor malignancy in breast cancer. Interestingly, DAB2IP has also been found to be a potential regulator of glucose uptake; however, the exact mechanism remains unclear. In this study, we found that DAB2IP inhibited glucose uptake under hypoxia conditions in breast cancer cells by suppressing HIF-1α signals. Mechanically, DAB2IP interacted with the E3 ubiquitin ligase STUB1 via its PER domain, thus triggering STUB1 mediated HIF-1α ubiquitylation and degradation, and inhibit glucose metabolism and tumor progression. Deleting the PER domain abrogated the DAB2IP-related inhibitory effects on glucose uptake, intracellular ATP production, and lactic acid production in breast cancer cells. These findings elucidate the biological roles of DAB2IP in cancer-related glucose metabolism as well as a novel mechanism by which STUB1-driven HIF-1α ubiquitylated degradation is regulated in breast cancer.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Oncogenesis
Oncogenesis ONCOLOGY-
CiteScore
11.90
自引率
0.00%
发文量
70
审稿时长
26 weeks
期刊介绍: Oncogenesis is a peer-reviewed open access online journal that publishes full-length papers, reviews, and short communications exploring the molecular basis of cancer and related phenomena. It seeks to promote diverse and integrated areas of molecular biology, cell biology, oncology, and genetics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信