{"title":"髓系细胞 mPGES-1 缺失可减轻磷酸钙诱发的雄性小鼠腹主动脉瘤","authors":"Meina Guo, Shuang Ji, Hui Wang, Jiayang Zhang, Jingwen Zhu, Guangrui Yang, Lihong Chen","doi":"10.1007/s10753-024-02055-w","DOIUrl":null,"url":null,"abstract":"<p><p>Microsomal PGE<sub>2</sub> synthase (mPGES)-1 is the key enzyme responsible for synthesizing inflammatory prostaglandin E<sub>2</sub> (PGE<sub>2</sub>). Our previous studies have shown that deletion mPGES-1 in myeloid cells hinders atherogenesis, suppresses vascular proliferative response to injury and enhances survival after myocardial infarction. Here we aimed to further explore the influence of myeloid cell mPGES-1 deletion in abdominal aortic aneurysm (AAA) formation. The AAA was triggered by applying 0.5 M calcium phosphate (CaPO<sub>4</sub>) to the infrarenal aorta of both myeloid mPGES-1 knockout (Mac-mPGES-1-KO) and their littermate control Mac-mPGES-1-WT mice. AAA induction was assessed by calculating the expansion of the infrarenal aortic diameter 4 weeks after CaPO<sub>4</sub> application. The maximum diameters of the aortas were measured by morphometry and the mean maximal diameters were calculated. Paraffin sections of the infrarenal aortas were examined for morphological analysis and immunohistochemical staining. The results showed that myeloid cell mPGES-1 deletion significantly mitigated AAA formation, including reducing expansion of the infrarenal aorta, preventing elastic lamellar degradation, and decreasing aortic calcium deposition. Immunohistochemical staining further indicated that macrophage infiltration and matrix metalloproteinase 2 (MMP2) expression was attenuated in the Mac-mPGES-1-KO aortas. Consistently, in vitro experiments showed that expression of pro-inflammatory cytokines and MMPs was significantly reduced when mPGES-1 was lacking in the primary cultured peritoneal macrophages. These data altogether demonstrated that deletion of mPGES-1 in myeloid cells may attenuate AAA formation and targeting myeloid cell mPGES-1 could potentially offer an effective strategy for the treatment and prevention of vascular inflammatory diseases.</p>","PeriodicalId":13524,"journal":{"name":"Inflammation","volume":" ","pages":"288-298"},"PeriodicalIF":4.5000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Myeloid Cell mPGES-1 Deletion Attenuates Calcium Phosphate-induced Abdominal Aortic Aneurysm in Male Mice.\",\"authors\":\"Meina Guo, Shuang Ji, Hui Wang, Jiayang Zhang, Jingwen Zhu, Guangrui Yang, Lihong Chen\",\"doi\":\"10.1007/s10753-024-02055-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Microsomal PGE<sub>2</sub> synthase (mPGES)-1 is the key enzyme responsible for synthesizing inflammatory prostaglandin E<sub>2</sub> (PGE<sub>2</sub>). Our previous studies have shown that deletion mPGES-1 in myeloid cells hinders atherogenesis, suppresses vascular proliferative response to injury and enhances survival after myocardial infarction. Here we aimed to further explore the influence of myeloid cell mPGES-1 deletion in abdominal aortic aneurysm (AAA) formation. The AAA was triggered by applying 0.5 M calcium phosphate (CaPO<sub>4</sub>) to the infrarenal aorta of both myeloid mPGES-1 knockout (Mac-mPGES-1-KO) and their littermate control Mac-mPGES-1-WT mice. AAA induction was assessed by calculating the expansion of the infrarenal aortic diameter 4 weeks after CaPO<sub>4</sub> application. The maximum diameters of the aortas were measured by morphometry and the mean maximal diameters were calculated. Paraffin sections of the infrarenal aortas were examined for morphological analysis and immunohistochemical staining. The results showed that myeloid cell mPGES-1 deletion significantly mitigated AAA formation, including reducing expansion of the infrarenal aorta, preventing elastic lamellar degradation, and decreasing aortic calcium deposition. Immunohistochemical staining further indicated that macrophage infiltration and matrix metalloproteinase 2 (MMP2) expression was attenuated in the Mac-mPGES-1-KO aortas. Consistently, in vitro experiments showed that expression of pro-inflammatory cytokines and MMPs was significantly reduced when mPGES-1 was lacking in the primary cultured peritoneal macrophages. These data altogether demonstrated that deletion of mPGES-1 in myeloid cells may attenuate AAA formation and targeting myeloid cell mPGES-1 could potentially offer an effective strategy for the treatment and prevention of vascular inflammatory diseases.</p>\",\"PeriodicalId\":13524,\"journal\":{\"name\":\"Inflammation\",\"volume\":\" \",\"pages\":\"288-298\"},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2025-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Inflammation\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s10753-024-02055-w\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/6/12 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Inflammation","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s10753-024-02055-w","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/6/12 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
Myeloid Cell mPGES-1 Deletion Attenuates Calcium Phosphate-induced Abdominal Aortic Aneurysm in Male Mice.
Microsomal PGE2 synthase (mPGES)-1 is the key enzyme responsible for synthesizing inflammatory prostaglandin E2 (PGE2). Our previous studies have shown that deletion mPGES-1 in myeloid cells hinders atherogenesis, suppresses vascular proliferative response to injury and enhances survival after myocardial infarction. Here we aimed to further explore the influence of myeloid cell mPGES-1 deletion in abdominal aortic aneurysm (AAA) formation. The AAA was triggered by applying 0.5 M calcium phosphate (CaPO4) to the infrarenal aorta of both myeloid mPGES-1 knockout (Mac-mPGES-1-KO) and their littermate control Mac-mPGES-1-WT mice. AAA induction was assessed by calculating the expansion of the infrarenal aortic diameter 4 weeks after CaPO4 application. The maximum diameters of the aortas were measured by morphometry and the mean maximal diameters were calculated. Paraffin sections of the infrarenal aortas were examined for morphological analysis and immunohistochemical staining. The results showed that myeloid cell mPGES-1 deletion significantly mitigated AAA formation, including reducing expansion of the infrarenal aorta, preventing elastic lamellar degradation, and decreasing aortic calcium deposition. Immunohistochemical staining further indicated that macrophage infiltration and matrix metalloproteinase 2 (MMP2) expression was attenuated in the Mac-mPGES-1-KO aortas. Consistently, in vitro experiments showed that expression of pro-inflammatory cytokines and MMPs was significantly reduced when mPGES-1 was lacking in the primary cultured peritoneal macrophages. These data altogether demonstrated that deletion of mPGES-1 in myeloid cells may attenuate AAA formation and targeting myeloid cell mPGES-1 could potentially offer an effective strategy for the treatment and prevention of vascular inflammatory diseases.
期刊介绍:
Inflammation publishes the latest international advances in experimental and clinical research on the physiology, biochemistry, cell biology, and pharmacology of inflammation. Contributions include full-length scientific reports, short definitive articles, and papers from meetings and symposia proceedings. The journal''s coverage includes acute and chronic inflammation; mediators of inflammation; mechanisms of tissue injury and cytotoxicity; pharmacology of inflammation; and clinical studies of inflammation and its modification.