{"title":"多变量异常检测模型提高了常规临床化学检验中错误的识别能力。","authors":"Christopher J L Farrell","doi":"10.1515/cclm-2024-0484","DOIUrl":null,"url":null,"abstract":"<p><strong>Objectives: </strong>Conventional autoverification rules evaluate analytes independently, potentially missing unusual patterns of results indicative of errors such as serum contamination by collection tube additives. This study assessed whether multivariate anomaly detection algorithms could enhance the detection of such errors.</p><p><strong>Methods: </strong>Multivariate Gaussian, k-nearest neighbours (KNN) distance, and one-class support vector machine (SVM) anomaly detection models, along with conventional limit checks, were developed using a training dataset of 127,451 electrolyte, urea, and creatinine (EUC) results, with a 5 % flagging rate targeted for all approaches. The models were compared with limit checks for their ability to detect atypical EUC results from samples spiked with additives from collection tubes: EDTA, fluoride, sodium citrate, or acid citrate dextrose (n=200 per contaminant). The study additionally assessed the ability of the models to identify 127,449 single-analyte errors, a potential weakness of multivariate models.</p><p><strong>Results: </strong>The KNN distance and SVM models outperformed limit checks for detecting all contaminants (p-values <0.05). The multivariate Gaussian model did not surpass limit checks for detecting EDTA contamination but was superior for detecting the other additives. All models surpassed limit checks for identifying single-analyte errors, with the KNN distance model demonstrating the highest overall sensitivity.</p><p><strong>Conclusions: </strong>Multivariate anomaly detection models, particularly the KNN distance model, were superior to the conventional approach for detecting serum contamination and single-analyte errors. Developing multivariate approaches to autoverification is warranted to optimise error detection and improve patient safety.</p>","PeriodicalId":10390,"journal":{"name":"Clinical chemistry and laboratory medicine","volume":null,"pages":null},"PeriodicalIF":3.8000,"publicationDate":"2024-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multivariate anomaly detection models enhance identification of errors in routine clinical chemistry testing.\",\"authors\":\"Christopher J L Farrell\",\"doi\":\"10.1515/cclm-2024-0484\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Objectives: </strong>Conventional autoverification rules evaluate analytes independently, potentially missing unusual patterns of results indicative of errors such as serum contamination by collection tube additives. This study assessed whether multivariate anomaly detection algorithms could enhance the detection of such errors.</p><p><strong>Methods: </strong>Multivariate Gaussian, k-nearest neighbours (KNN) distance, and one-class support vector machine (SVM) anomaly detection models, along with conventional limit checks, were developed using a training dataset of 127,451 electrolyte, urea, and creatinine (EUC) results, with a 5 % flagging rate targeted for all approaches. The models were compared with limit checks for their ability to detect atypical EUC results from samples spiked with additives from collection tubes: EDTA, fluoride, sodium citrate, or acid citrate dextrose (n=200 per contaminant). The study additionally assessed the ability of the models to identify 127,449 single-analyte errors, a potential weakness of multivariate models.</p><p><strong>Results: </strong>The KNN distance and SVM models outperformed limit checks for detecting all contaminants (p-values <0.05). The multivariate Gaussian model did not surpass limit checks for detecting EDTA contamination but was superior for detecting the other additives. All models surpassed limit checks for identifying single-analyte errors, with the KNN distance model demonstrating the highest overall sensitivity.</p><p><strong>Conclusions: </strong>Multivariate anomaly detection models, particularly the KNN distance model, were superior to the conventional approach for detecting serum contamination and single-analyte errors. Developing multivariate approaches to autoverification is warranted to optimise error detection and improve patient safety.</p>\",\"PeriodicalId\":10390,\"journal\":{\"name\":\"Clinical chemistry and laboratory medicine\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2024-06-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Clinical chemistry and laboratory medicine\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1515/cclm-2024-0484\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/11/26 0:00:00\",\"PubModel\":\"Print\",\"JCR\":\"Q1\",\"JCRName\":\"MEDICAL LABORATORY TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Clinical chemistry and laboratory medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1515/cclm-2024-0484","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/26 0:00:00","PubModel":"Print","JCR":"Q1","JCRName":"MEDICAL LABORATORY TECHNOLOGY","Score":null,"Total":0}
Multivariate anomaly detection models enhance identification of errors in routine clinical chemistry testing.
Objectives: Conventional autoverification rules evaluate analytes independently, potentially missing unusual patterns of results indicative of errors such as serum contamination by collection tube additives. This study assessed whether multivariate anomaly detection algorithms could enhance the detection of such errors.
Methods: Multivariate Gaussian, k-nearest neighbours (KNN) distance, and one-class support vector machine (SVM) anomaly detection models, along with conventional limit checks, were developed using a training dataset of 127,451 electrolyte, urea, and creatinine (EUC) results, with a 5 % flagging rate targeted for all approaches. The models were compared with limit checks for their ability to detect atypical EUC results from samples spiked with additives from collection tubes: EDTA, fluoride, sodium citrate, or acid citrate dextrose (n=200 per contaminant). The study additionally assessed the ability of the models to identify 127,449 single-analyte errors, a potential weakness of multivariate models.
Results: The KNN distance and SVM models outperformed limit checks for detecting all contaminants (p-values <0.05). The multivariate Gaussian model did not surpass limit checks for detecting EDTA contamination but was superior for detecting the other additives. All models surpassed limit checks for identifying single-analyte errors, with the KNN distance model demonstrating the highest overall sensitivity.
Conclusions: Multivariate anomaly detection models, particularly the KNN distance model, were superior to the conventional approach for detecting serum contamination and single-analyte errors. Developing multivariate approaches to autoverification is warranted to optimise error detection and improve patient safety.
期刊介绍:
Clinical Chemistry and Laboratory Medicine (CCLM) publishes articles on novel teaching and training methods applicable to laboratory medicine. CCLM welcomes contributions on the progress in fundamental and applied research and cutting-edge clinical laboratory medicine. It is one of the leading journals in the field, with an impact factor over 3. CCLM is issued monthly, and it is published in print and electronically.
CCLM is the official journal of the European Federation of Clinical Chemistry and Laboratory Medicine (EFLM) and publishes regularly EFLM recommendations and news. CCLM is the official journal of the National Societies from Austria (ÖGLMKC); Belgium (RBSLM); Germany (DGKL); Hungary (MLDT); Ireland (ACBI); Italy (SIBioC); Portugal (SPML); and Slovenia (SZKK); and it is affiliated to AACB (Australia) and SFBC (France).
Topics:
- clinical biochemistry
- clinical genomics and molecular biology
- clinical haematology and coagulation
- clinical immunology and autoimmunity
- clinical microbiology
- drug monitoring and analysis
- evaluation of diagnostic biomarkers
- disease-oriented topics (cardiovascular disease, cancer diagnostics, diabetes)
- new reagents, instrumentation and technologies
- new methodologies
- reference materials and methods
- reference values and decision limits
- quality and safety in laboratory medicine
- translational laboratory medicine
- clinical metrology
Follow @cclm_degruyter on Twitter!