多变量异常检测模型提高了常规临床化学检验中错误的识别能力。

IF 3.8 2区 医学 Q1 MEDICAL LABORATORY TECHNOLOGY
Clinical chemistry and laboratory medicine Pub Date : 2024-06-12 Print Date: 2024-11-26 DOI:10.1515/cclm-2024-0484
Christopher J L Farrell
{"title":"多变量异常检测模型提高了常规临床化学检验中错误的识别能力。","authors":"Christopher J L Farrell","doi":"10.1515/cclm-2024-0484","DOIUrl":null,"url":null,"abstract":"<p><strong>Objectives: </strong>Conventional autoverification rules evaluate analytes independently, potentially missing unusual patterns of results indicative of errors such as serum contamination by collection tube additives. This study assessed whether multivariate anomaly detection algorithms could enhance the detection of such errors.</p><p><strong>Methods: </strong>Multivariate Gaussian, k-nearest neighbours (KNN) distance, and one-class support vector machine (SVM) anomaly detection models, along with conventional limit checks, were developed using a training dataset of 127,451 electrolyte, urea, and creatinine (EUC) results, with a 5 % flagging rate targeted for all approaches. The models were compared with limit checks for their ability to detect atypical EUC results from samples spiked with additives from collection tubes: EDTA, fluoride, sodium citrate, or acid citrate dextrose (n=200 per contaminant). The study additionally assessed the ability of the models to identify 127,449 single-analyte errors, a potential weakness of multivariate models.</p><p><strong>Results: </strong>The KNN distance and SVM models outperformed limit checks for detecting all contaminants (p-values <0.05). The multivariate Gaussian model did not surpass limit checks for detecting EDTA contamination but was superior for detecting the other additives. All models surpassed limit checks for identifying single-analyte errors, with the KNN distance model demonstrating the highest overall sensitivity.</p><p><strong>Conclusions: </strong>Multivariate anomaly detection models, particularly the KNN distance model, were superior to the conventional approach for detecting serum contamination and single-analyte errors. Developing multivariate approaches to autoverification is warranted to optimise error detection and improve patient safety.</p>","PeriodicalId":10390,"journal":{"name":"Clinical chemistry and laboratory medicine","volume":null,"pages":null},"PeriodicalIF":3.8000,"publicationDate":"2024-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multivariate anomaly detection models enhance identification of errors in routine clinical chemistry testing.\",\"authors\":\"Christopher J L Farrell\",\"doi\":\"10.1515/cclm-2024-0484\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Objectives: </strong>Conventional autoverification rules evaluate analytes independently, potentially missing unusual patterns of results indicative of errors such as serum contamination by collection tube additives. This study assessed whether multivariate anomaly detection algorithms could enhance the detection of such errors.</p><p><strong>Methods: </strong>Multivariate Gaussian, k-nearest neighbours (KNN) distance, and one-class support vector machine (SVM) anomaly detection models, along with conventional limit checks, were developed using a training dataset of 127,451 electrolyte, urea, and creatinine (EUC) results, with a 5 % flagging rate targeted for all approaches. The models were compared with limit checks for their ability to detect atypical EUC results from samples spiked with additives from collection tubes: EDTA, fluoride, sodium citrate, or acid citrate dextrose (n=200 per contaminant). The study additionally assessed the ability of the models to identify 127,449 single-analyte errors, a potential weakness of multivariate models.</p><p><strong>Results: </strong>The KNN distance and SVM models outperformed limit checks for detecting all contaminants (p-values <0.05). The multivariate Gaussian model did not surpass limit checks for detecting EDTA contamination but was superior for detecting the other additives. All models surpassed limit checks for identifying single-analyte errors, with the KNN distance model demonstrating the highest overall sensitivity.</p><p><strong>Conclusions: </strong>Multivariate anomaly detection models, particularly the KNN distance model, were superior to the conventional approach for detecting serum contamination and single-analyte errors. Developing multivariate approaches to autoverification is warranted to optimise error detection and improve patient safety.</p>\",\"PeriodicalId\":10390,\"journal\":{\"name\":\"Clinical chemistry and laboratory medicine\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2024-06-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Clinical chemistry and laboratory medicine\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1515/cclm-2024-0484\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/11/26 0:00:00\",\"PubModel\":\"Print\",\"JCR\":\"Q1\",\"JCRName\":\"MEDICAL LABORATORY TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Clinical chemistry and laboratory medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1515/cclm-2024-0484","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/26 0:00:00","PubModel":"Print","JCR":"Q1","JCRName":"MEDICAL LABORATORY TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

目的:传统的自动验证规则对分析物进行独立评估,可能会遗漏表明错误(如采集管添加剂污染血清)的异常结果模式。本研究评估了多变量异常检测算法能否增强对此类错误的检测:方法:使用一个包含 127,451 项电解质、尿素和肌酐(EUC)结果的训练数据集,开发了多变量高斯、k-近邻(KNN)距离和单类支持向量机(SVM)异常检测模型,以及传统的限值检查,所有方法的目标标记率均为 5%。将这些模型与极限检查进行了比较,以检测从采集管中添加添加剂的样本中检测非典型 EUC 结果的能力:EDTA、氟化物、柠檬酸钠或酸性柠檬酸葡萄糖(每种污染物 n=200 个)。研究还评估了这些模型识别 127,449 个单一分析物错误的能力,这是多元模型的一个潜在弱点:结果:在检测所有污染物方面,KNN 距离和 SVM 模型的表现优于极限检查(p 值结论):多变量异常检测模型,尤其是 KNN 距离模型,在检测血清污染和单一分析误差方面优于传统方法。有必要开发多变量自动识别方法,以优化错误检测并提高患者安全性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multivariate anomaly detection models enhance identification of errors in routine clinical chemistry testing.

Objectives: Conventional autoverification rules evaluate analytes independently, potentially missing unusual patterns of results indicative of errors such as serum contamination by collection tube additives. This study assessed whether multivariate anomaly detection algorithms could enhance the detection of such errors.

Methods: Multivariate Gaussian, k-nearest neighbours (KNN) distance, and one-class support vector machine (SVM) anomaly detection models, along with conventional limit checks, were developed using a training dataset of 127,451 electrolyte, urea, and creatinine (EUC) results, with a 5 % flagging rate targeted for all approaches. The models were compared with limit checks for their ability to detect atypical EUC results from samples spiked with additives from collection tubes: EDTA, fluoride, sodium citrate, or acid citrate dextrose (n=200 per contaminant). The study additionally assessed the ability of the models to identify 127,449 single-analyte errors, a potential weakness of multivariate models.

Results: The KNN distance and SVM models outperformed limit checks for detecting all contaminants (p-values <0.05). The multivariate Gaussian model did not surpass limit checks for detecting EDTA contamination but was superior for detecting the other additives. All models surpassed limit checks for identifying single-analyte errors, with the KNN distance model demonstrating the highest overall sensitivity.

Conclusions: Multivariate anomaly detection models, particularly the KNN distance model, were superior to the conventional approach for detecting serum contamination and single-analyte errors. Developing multivariate approaches to autoverification is warranted to optimise error detection and improve patient safety.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Clinical chemistry and laboratory medicine
Clinical chemistry and laboratory medicine 医学-医学实验技术
CiteScore
11.30
自引率
16.20%
发文量
306
审稿时长
3 months
期刊介绍: Clinical Chemistry and Laboratory Medicine (CCLM) publishes articles on novel teaching and training methods applicable to laboratory medicine. CCLM welcomes contributions on the progress in fundamental and applied research and cutting-edge clinical laboratory medicine. It is one of the leading journals in the field, with an impact factor over 3. CCLM is issued monthly, and it is published in print and electronically. CCLM is the official journal of the European Federation of Clinical Chemistry and Laboratory Medicine (EFLM) and publishes regularly EFLM recommendations and news. CCLM is the official journal of the National Societies from Austria (ÖGLMKC); Belgium (RBSLM); Germany (DGKL); Hungary (MLDT); Ireland (ACBI); Italy (SIBioC); Portugal (SPML); and Slovenia (SZKK); and it is affiliated to AACB (Australia) and SFBC (France). Topics: - clinical biochemistry - clinical genomics and molecular biology - clinical haematology and coagulation - clinical immunology and autoimmunity - clinical microbiology - drug monitoring and analysis - evaluation of diagnostic biomarkers - disease-oriented topics (cardiovascular disease, cancer diagnostics, diabetes) - new reagents, instrumentation and technologies - new methodologies - reference materials and methods - reference values and decision limits - quality and safety in laboratory medicine - translational laboratory medicine - clinical metrology Follow @cclm_degruyter on Twitter!
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信