{"title":"野生大黄蜂的推理能力","authors":"Gema Martin-Ordas","doi":"10.1098/rsbl.2023.0561","DOIUrl":null,"url":null,"abstract":"<p><p>The ability to make a decision by excluding alternatives (i.e. inferential reasoning) is a type of logical reasoning that allows organisms to solve problems with incomplete information. Several species of vertebrates have been shown to find hidden food using inferential reasoning abilities. Yet little is known about invertebrates' logical reasoning capabilities. In three experiments, I examined wild-caught bumblebees' abilities to locate a 'rewarded' stimulus using direct information or incomplete information-the latter requiring bees to use inferential reasoning. To do so, I adapted three paradigms previously used with primates-the two-cup, three-cup and double two-cup tasks. Bumblebees saw either two paper strips (experiment 1), three paper strips (experiment 2) or two pairs of paper strips (experiment 3) and experienced one of them being rewarded or unrewarded. At the test, they could choose between two (experiment 1), three (experiment 2) or four paper strips (experiment 3). Bumblebees succeeded in the three tasks and their performance was consistent with inferential reasoning. These findings highlight the importance of comparative studies with invertebrates to comprehensively track the evolution of reasoning abilities, in particular, and cognition, in general.</p>","PeriodicalId":9005,"journal":{"name":"Biology Letters","volume":"20 6","pages":"20230561"},"PeriodicalIF":2.8000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11285726/pdf/","citationCount":"0","resultStr":"{\"title\":\"Inferential reasoning abilities in wild-caught bumblebees.\",\"authors\":\"Gema Martin-Ordas\",\"doi\":\"10.1098/rsbl.2023.0561\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The ability to make a decision by excluding alternatives (i.e. inferential reasoning) is a type of logical reasoning that allows organisms to solve problems with incomplete information. Several species of vertebrates have been shown to find hidden food using inferential reasoning abilities. Yet little is known about invertebrates' logical reasoning capabilities. In three experiments, I examined wild-caught bumblebees' abilities to locate a 'rewarded' stimulus using direct information or incomplete information-the latter requiring bees to use inferential reasoning. To do so, I adapted three paradigms previously used with primates-the two-cup, three-cup and double two-cup tasks. Bumblebees saw either two paper strips (experiment 1), three paper strips (experiment 2) or two pairs of paper strips (experiment 3) and experienced one of them being rewarded or unrewarded. At the test, they could choose between two (experiment 1), three (experiment 2) or four paper strips (experiment 3). Bumblebees succeeded in the three tasks and their performance was consistent with inferential reasoning. These findings highlight the importance of comparative studies with invertebrates to comprehensively track the evolution of reasoning abilities, in particular, and cognition, in general.</p>\",\"PeriodicalId\":9005,\"journal\":{\"name\":\"Biology Letters\",\"volume\":\"20 6\",\"pages\":\"20230561\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2024-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11285726/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biology Letters\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1098/rsbl.2023.0561\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/6/12 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biology Letters","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1098/rsbl.2023.0561","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/6/12 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"BIOLOGY","Score":null,"Total":0}
Inferential reasoning abilities in wild-caught bumblebees.
The ability to make a decision by excluding alternatives (i.e. inferential reasoning) is a type of logical reasoning that allows organisms to solve problems with incomplete information. Several species of vertebrates have been shown to find hidden food using inferential reasoning abilities. Yet little is known about invertebrates' logical reasoning capabilities. In three experiments, I examined wild-caught bumblebees' abilities to locate a 'rewarded' stimulus using direct information or incomplete information-the latter requiring bees to use inferential reasoning. To do so, I adapted three paradigms previously used with primates-the two-cup, three-cup and double two-cup tasks. Bumblebees saw either two paper strips (experiment 1), three paper strips (experiment 2) or two pairs of paper strips (experiment 3) and experienced one of them being rewarded or unrewarded. At the test, they could choose between two (experiment 1), three (experiment 2) or four paper strips (experiment 3). Bumblebees succeeded in the three tasks and their performance was consistent with inferential reasoning. These findings highlight the importance of comparative studies with invertebrates to comprehensively track the evolution of reasoning abilities, in particular, and cognition, in general.
期刊介绍:
Previously a supplement to Proceedings B, and launched as an independent journal in 2005, Biology Letters is a primarily online, peer-reviewed journal that publishes short, high-quality articles, reviews and opinion pieces from across the biological sciences. The scope of Biology Letters is vast - publishing high-quality research in any area of the biological sciences. However, we have particular strengths in the biology, evolution and ecology of whole organisms. We also publish in other areas of biology, such as molecular ecology and evolution, environmental science, and phylogenetics.