{"title":"同质类型空间上与可接受函数相关的分数积分的加权有界性","authors":"Gaigai Qin, Xing Fu","doi":"10.1007/s13540-024-00300-5","DOIUrl":null,"url":null,"abstract":"<p>Let <span>\\(({{\\mathcal {X}}},d,\\mu )\\)</span> be a space of homogeneous type in the sense of Coifman and Weiss. In this paper, we first establish several weighted norm estimates for various maximal functions. Then we show the weighted boundedness of the fractional integral <span>\\(I_\\beta \\)</span> associated with admissible functions and its commutators. Similarly to <span>\\(I_\\beta \\)</span>, corresponding results for Calderón–Zygmund operators <i>T</i> associated with admissible functions are also included in this article.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Weighted boundedness of fractional integrals associated with admissible functions on spaces of homogeneous type\",\"authors\":\"Gaigai Qin, Xing Fu\",\"doi\":\"10.1007/s13540-024-00300-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Let <span>\\\\(({{\\\\mathcal {X}}},d,\\\\mu )\\\\)</span> be a space of homogeneous type in the sense of Coifman and Weiss. In this paper, we first establish several weighted norm estimates for various maximal functions. Then we show the weighted boundedness of the fractional integral <span>\\\\(I_\\\\beta \\\\)</span> associated with admissible functions and its commutators. Similarly to <span>\\\\(I_\\\\beta \\\\)</span>, corresponding results for Calderón–Zygmund operators <i>T</i> associated with admissible functions are also included in this article.</p>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-06-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s13540-024-00300-5\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s13540-024-00300-5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
Weighted boundedness of fractional integrals associated with admissible functions on spaces of homogeneous type
Let \(({{\mathcal {X}}},d,\mu )\) be a space of homogeneous type in the sense of Coifman and Weiss. In this paper, we first establish several weighted norm estimates for various maximal functions. Then we show the weighted boundedness of the fractional integral \(I_\beta \) associated with admissible functions and its commutators. Similarly to \(I_\beta \), corresponding results for Calderón–Zygmund operators T associated with admissible functions are also included in this article.