同质类型空间上与可接受函数相关的分数积分的加权有界性

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Gaigai Qin, Xing Fu
{"title":"同质类型空间上与可接受函数相关的分数积分的加权有界性","authors":"Gaigai Qin, Xing Fu","doi":"10.1007/s13540-024-00300-5","DOIUrl":null,"url":null,"abstract":"<p>Let <span>\\(({{\\mathcal {X}}},d,\\mu )\\)</span> be a space of homogeneous type in the sense of Coifman and Weiss. In this paper, we first establish several weighted norm estimates for various maximal functions. Then we show the weighted boundedness of the fractional integral <span>\\(I_\\beta \\)</span> associated with admissible functions and its commutators. Similarly to <span>\\(I_\\beta \\)</span>, corresponding results for Calderón–Zygmund operators <i>T</i> associated with admissible functions are also included in this article.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Weighted boundedness of fractional integrals associated with admissible functions on spaces of homogeneous type\",\"authors\":\"Gaigai Qin, Xing Fu\",\"doi\":\"10.1007/s13540-024-00300-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Let <span>\\\\(({{\\\\mathcal {X}}},d,\\\\mu )\\\\)</span> be a space of homogeneous type in the sense of Coifman and Weiss. In this paper, we first establish several weighted norm estimates for various maximal functions. Then we show the weighted boundedness of the fractional integral <span>\\\\(I_\\\\beta \\\\)</span> associated with admissible functions and its commutators. Similarly to <span>\\\\(I_\\\\beta \\\\)</span>, corresponding results for Calderón–Zygmund operators <i>T</i> associated with admissible functions are also included in this article.</p>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-06-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s13540-024-00300-5\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s13540-024-00300-5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

设 \(({{\mathcal {X}}},d,\mu )\) 是 Coifman 和 Weiss 意义上的均质型空间。在本文中,我们首先为各种最大函数建立了几个加权规范估计。然后,我们证明了与可容许函数及其换元相关的分数积分 \(I_\beta \) 的加权有界性。与 \(I_\beta \) 类似,本文也包含了与可允许函数相关的卡尔德龙-齐格蒙特算子 T 的相应结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Weighted boundedness of fractional integrals associated with admissible functions on spaces of homogeneous type

Let \(({{\mathcal {X}}},d,\mu )\) be a space of homogeneous type in the sense of Coifman and Weiss. In this paper, we first establish several weighted norm estimates for various maximal functions. Then we show the weighted boundedness of the fractional integral \(I_\beta \) associated with admissible functions and its commutators. Similarly to \(I_\beta \), corresponding results for Calderón–Zygmund operators T associated with admissible functions are also included in this article.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信